- 模型壓縮深度學(xué)習(xí) 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 模型壓縮深度學(xué)習(xí) 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科來自:百科
- 模型壓縮深度學(xué)習(xí) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡介 ModelArts模型訓(xùn)練,俗稱“建模”,指通過分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測、評(píng)價(jià)等結(jié)果。來自:專題如何做好IoT數(shù)據(jù)分析 資產(chǎn)模型 資產(chǎn)模型是IoT數(shù)據(jù)分析服務(wù)充分理解物聯(lián)網(wǎng)數(shù)據(jù)的基礎(chǔ)。構(gòu)建資產(chǎn)模型,就是構(gòu)建物與物,物與空間,物與人等復(fù)雜關(guān)系,將物聯(lián)網(wǎng)數(shù)據(jù)置于模型的上下文中去理解。資產(chǎn)模型就是物理世界的資產(chǎn)在數(shù)字世界中的映射,兩邊的數(shù)據(jù)準(zhǔn)實(shí)時(shí)同步,實(shí)現(xiàn)數(shù)字孿生。IoT數(shù)據(jù)分析服務(wù)基于資產(chǎn)模型抽象,來自:百科09:29:45 IoT數(shù)據(jù)分析基于物聯(lián)網(wǎng)資產(chǎn)模型,整合物聯(lián)網(wǎng)數(shù)據(jù)集成,清洗,存儲(chǔ),分析,可視化,為開發(fā)者提供一站式服務(wù),降低開發(fā)門檻,縮短開發(fā)周期,快速實(shí)現(xiàn)物聯(lián)網(wǎng)數(shù)據(jù)價(jià)值變現(xiàn)。 物聯(lián)網(wǎng)資產(chǎn)模型感知 物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)是以物聯(lián)網(wǎng)資產(chǎn)模型為中心的分析服務(wù),不同于公有云上的通用型大數(shù)據(jù)來自:百科
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:知識(shí)蒸餾與模型壓縮
- 深度神經(jīng)網(wǎng)絡(luò)中的模型壓縮與加速技術(shù)
- 深度學(xué)習(xí)模型編譯技術(shù)
- 深度學(xué)習(xí)實(shí)踐篇[17]:模型壓縮技術(shù)、模型蒸餾算法:Patient-KD、DistilBERT、DynaBERT、TinyBER
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)-通用模型調(diào)試技巧
- 利用深度學(xué)習(xí)建立流失模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 模型壓縮部署概述