- 深度學(xué)習(xí)框架的要求 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí)框架的要求 相關(guān)內(nèi)容
-
本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科
- 深度學(xué)習(xí)框架的要求 更多內(nèi)容
-
更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科數(shù)據(jù)庫(kù)安全 基礎(chǔ) HCIA- GaussDB 系列課程。數(shù)據(jù)庫(kù)作為核心的基礎(chǔ)軟件,在我們的系統(tǒng)架構(gòu)中處于系統(tǒng)的最末端,它是查詢和存儲(chǔ)數(shù)據(jù)的系統(tǒng),是各業(yè)務(wù)數(shù)據(jù)最終落地的承載者,而當(dāng)今社會(huì)最值錢的又是擁有大量的數(shù)據(jù),因此其數(shù)據(jù)庫(kù)安全性至關(guān)重要。 立即學(xué)習(xí) 最新文章 替換VolcanoJobreplace來(lái)自:百科云知識(shí) 數(shù)據(jù)庫(kù)設(shè)計(jì)需求分析的要求 數(shù)據(jù)庫(kù)設(shè)計(jì)需求分析的要求 時(shí)間:2021-06-02 09:51:13 數(shù)據(jù)庫(kù) 在做數(shù)據(jù)庫(kù)設(shè)計(jì)的需求分析時(shí),需要: 1. 了解現(xiàn)有系統(tǒng)的運(yùn)行概況; 2. 確定新系統(tǒng)的功能要求; 3. 收集能夠?qū)崿F(xiàn)目標(biāo)的基礎(chǔ)數(shù)據(jù)及相關(guān)的業(yè)務(wù)流程。 文中課程 更多精來(lái)自:百科所設(shè)計(jì)的數(shù)據(jù)庫(kù)系統(tǒng)用到的所有信息,明確信息來(lái)源,方式,數(shù)據(jù)格式和內(nèi)容。 2. 處理需求 把用戶用業(yè)務(wù)語(yǔ)言描述的需求轉(zhuǎn)化成計(jì)算機(jī)系統(tǒng)或者開(kāi)發(fā)人員能夠理解的設(shè)計(jì)需求。所以要描述數(shù)據(jù)處理的操作功能。操作的先后次序,操作的執(zhí)行頻率,場(chǎng)合,操作和數(shù)據(jù)間的聯(lián)系,同時(shí)還要明確用戶要求的響應(yīng)時(shí)間來(lái)自:百科數(shù)據(jù)庫(kù)設(shè)計(jì)的目標(biāo)是提供一個(gè)信息基礎(chǔ)設(shè)施和高效的運(yùn)行環(huán)境。數(shù)據(jù)庫(kù)設(shè)計(jì)的目標(biāo)要遵循一些原則規(guī)范要求。 其中,數(shù)據(jù)庫(kù)的數(shù)據(jù)操作要求,是指對(duì)數(shù)據(jù)對(duì)象需要進(jìn)行哪些操作,比如增刪改查,統(tǒng)計(jì)等操作的要求。 文中課程 更多精彩課程、實(shí)驗(yàn)、微認(rèn)證,盡在????????????????????????來(lái)自:百科IO并發(fā)度要求高,以小數(shù)據(jù)塊訪問(wèn)為主; 3. CPU資源通常是瓶頸,適合多核架構(gòu)。 冷數(shù)據(jù)、溫?cái)?shù)據(jù)是不經(jīng)常訪問(wèn)的離線類數(shù)據(jù),比如備份和歸檔數(shù)據(jù)。對(duì)存儲(chǔ)性能的要求相對(duì)較低,要求大容量的存儲(chǔ)介質(zhì)。其硬件方案有以下的特點(diǎn): 1. 通常采用容量型SSD或大容量HDD存儲(chǔ); 2. 網(wǎng)絡(luò)資源是性能瓶頸; 3. 通過(guò)數(shù)據(jù)壓縮提升存儲(chǔ)介質(zhì)利用率。來(lái)自:百科
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2 深度學(xué)習(xí)框架
- 深度學(xué)習(xí)框架指南
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.3 本書涉及的深度學(xué)習(xí)框架
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 深度學(xué)習(xí)框架(PyTorch)
- PyTorch深度學(xué)習(xí)領(lǐng)域框架
- 針對(duì)深度學(xué)習(xí)框架版本的討論
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.4 優(yōu)化深度學(xué)習(xí)的方法
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.5 深度學(xué)習(xí)展望
- 初識(shí)深度學(xué)習(xí)推理框架 | 簡(jiǎn)記
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.2.2 基于統(tǒng)計(jì)的深度學(xué)習(xí)技術(shù)