- 深度學(xué)習(xí)交通車輛圖片檢測(cè) 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)交通車輛圖片檢測(cè) 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 交通事件檢測(cè) 交通事件檢測(cè) 時(shí)間:2021-01-12 15:45:21 視頻監(jiān)控 視頻檢測(cè) 人工智能 華為云好望商城交通事件檢測(cè)算法,服務(wù)商: 前端科技; 采用人工智能AI智能算法,可自動(dòng)檢測(cè)攝像機(jī)監(jiān)測(cè)范圍內(nèi)的逆行事件、停車事件、行人事件、拋灑物事件、擁堵事件、機(jī)動(dòng)車駛離事件、交通事故事件等。來(lái)自:云商店大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科
- 深度學(xué)習(xí)交通車輛圖片檢測(cè) 更多內(nèi)容
-
從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺翻譯、刷臉支付、人臉考勤……不知不覺,深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科
、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科
對(duì)多種板式發(fā)票進(jìn)行深度優(yōu)化,支持圖像翻轉(zhuǎn)、文字錯(cuò)行、蓋章干擾等復(fù)雜場(chǎng)景,數(shù)字、符號(hào)等文本識(shí)別精度高 2.借貸金融 自動(dòng)錄入文件信息 快速錄入機(jī)動(dòng)車銷售發(fā)票與合同信息,提升車貸辦理效率 優(yōu)勢(shì) 支持識(shí)別字段齊全 支持發(fā)票基礎(chǔ)信息、車輛信息等多項(xiàng)字段自動(dòng)識(shí)別和結(jié)構(gòu)化提取 簽名和蓋章自動(dòng)檢測(cè) 支持合同簽名與蓋章區(qū)域檢測(cè),提升合規(guī)審核效率來(lái)自:百科
華為云計(jì)算 云知識(shí) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤異常檢測(cè) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤異常檢測(cè) 時(shí)間:2021-01-05 11:41:15 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤異常檢測(cè)基于網(wǎng)絡(luò)人工智能(NAIE)訓(xùn)練平臺(tái)的硬盤異常預(yù)測(cè)程序,通過機(jī)器學(xué)習(xí)構(gòu)建硬盤故障預(yù)測(cè)模型,對(duì)數(shù)據(jù)來(lái)自:百科
華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè) 時(shí)間:2021-01-05 11:40:25 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè)提供某運(yùn)營(yíng)商的KPI真實(shí)數(shù)據(jù),參賽選手需要根據(jù)歷史40天異常標(biāo)簽數(shù)據(jù)(訓(xùn)練數(shù)據(jù)集),訓(xùn)練模型并檢測(cè)后續(xù)17天內(nèi)各KPI(測(cè)試數(shù)據(jù)集)中的異常。來(lái)自:百科
- OpenCV中的深度學(xué)習(xí)車輛檢測(cè)
- 基于 YOLOV3的交通車輛檢測(cè)
- 深度學(xué)習(xí)在自動(dòng)駕駛車輛車道檢測(cè)中的應(yīng)用
- 基于深度學(xué)習(xí)的停車場(chǎng)車輛檢測(cè)算法matlab仿真
- 基于FasterRCNN深度學(xué)習(xí)網(wǎng)絡(luò)的車輛檢測(cè)算法matlab仿真
- 基于Yolov2深度學(xué)習(xí)網(wǎng)絡(luò)的車輛檢測(cè)算法matlab仿真
- 基于RCNN深度學(xué)習(xí)網(wǎng)絡(luò)的交通標(biāo)志檢測(cè)算法matlab仿真
- 基于Fast-RCNN深度學(xué)習(xí)網(wǎng)絡(luò)的交通標(biāo)志檢測(cè)算法matlab仿真
- 基于yolov2深度學(xué)習(xí)網(wǎng)絡(luò)的車輛行人檢測(cè)算法matlab仿真
- 基于YOLOv8的交通車輛(12種常見車型)實(shí)時(shí)檢測(cè)系統(tǒng)識(shí)別項(xiàng)目|完整源碼數(shù)據(jù)集+PyQt5界面+完整訓(xùn)練流程+開箱即用!