- 深度學(xué)習(xí)技術(shù)與應(yīng)用 內(nèi)容精選 換一換
-
類的水平。本課程將介紹深度學(xué)習(xí)算法的知識(shí)。 課程簡介 本課程將會(huì)探討深度學(xué)習(xí)中的基礎(chǔ)理論、算法、使用方法、技巧與不同的深度學(xué)習(xí)模型。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、掌握神經(jīng)網(wǎng)絡(luò)基礎(chǔ)理論。 2、掌握深度學(xué)習(xí)中數(shù)據(jù)處理的基本方法。 3、掌握深度學(xué)習(xí)訓(xùn)練中調(diào)參、模型選擇的基本方法。來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科
- 深度學(xué)習(xí)技術(shù)與應(yīng)用 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí) 深度學(xué)習(xí) 時(shí)間:2020-11-23 16:30:56 深度學(xué)習(xí)( Deep Learning,DL)是機(jī)器學(xué)習(xí)的一種,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的必由之路。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個(gè)隱藏層的多層感知器就是深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過組合低層特來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見的問題。 課程大綱 1. 深度學(xué)習(xí)簡介 2.來自:百科
- 深度學(xué)習(xí)技術(shù)與應(yīng)用 更多內(nèi)容
-
經(jīng)網(wǎng)絡(luò)開發(fā)和訓(xùn)練,可謂再好不過了。如何使用深度學(xué)習(xí)框架MindSpore進(jìn)行模型開發(fā)與訓(xùn)練?又如何在ModelArts平臺(tái)訓(xùn)練一個(gè)可以用于識(shí)別手寫數(shù)字的模型呢?讓我們來一探究竟吧。 數(shù)據(jù)集的選擇與準(zhǔn)備 機(jī)器學(xué)習(xí)中的傳統(tǒng)機(jī)器學(xué)習(xí)和深度學(xué)習(xí)都是數(shù)據(jù)驅(qū)動(dòng)的研究領(lǐng)域,需要基于大量的歷史數(shù)來自:百科,提供給Learner 大數(shù)據(jù)應(yīng)用范圍有哪些 大數(shù)據(jù)應(yīng)用范圍有哪些 華為云大數(shù)據(jù)相關(guān)技術(shù)與產(chǎn)品服務(wù) 華為云大數(shù)據(jù)相關(guān)技術(shù)與產(chǎn)品服務(wù) 大數(shù)據(jù)計(jì)算 大數(shù)據(jù)搜索與分析 大 數(shù)據(jù)治理 與開發(fā) 數(shù)據(jù)可視化 大數(shù)據(jù)應(yīng)用 數(shù)據(jù)平臺(tái) MapReduce服務(wù) 支持多應(yīng)用場(chǎng)景集群 MapReduce服務(wù)(MapReduce來自:專題工智能的相關(guān)內(nèi)容與應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過本實(shí)驗(yàn)將了解如何使用Keras和Tensorflow構(gòu)建DFCNN的 語音識(shí)別 神經(jīng)網(wǎng)絡(luò),并且熟悉整個(gè)處理流程,包括數(shù)據(jù)預(yù)處理、模型訓(xùn)練、模型保存和模型預(yù)測(cè)等環(huán)節(jié)。 實(shí)驗(yàn)摘要 實(shí)驗(yàn)準(zhǔn)備:登錄華為云賬號(hào) 1. OBS 準(zhǔn)備 2.ModelArts應(yīng)用來自:百科在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書 區(qū)塊鏈 部署彈珠游戲模擬資產(chǎn)變化 初級(jí)微認(rèn)證 了解區(qū)塊鏈的基礎(chǔ)技術(shù),掌握區(qū)塊鏈服務(wù)部署應(yīng)用的流程,提高區(qū)塊鏈服務(wù)的使用能力 了解區(qū)塊鏈的基礎(chǔ)技術(shù),掌握區(qū)塊鏈服務(wù)部署應(yīng)用的流程,提高區(qū)塊鏈服務(wù)的使用能力 立即學(xué)習(xí) 區(qū)塊鏈的應(yīng)用部署與運(yùn)維 區(qū)塊鏈來自:專題
- 深度學(xué)習(xí)技術(shù)在測(cè)井?dāng)?shù)據(jù)分類與識(shí)別中的應(yīng)用
- 深度學(xué)習(xí)技術(shù)在油藏分析中的應(yīng)用
- 深度學(xué)習(xí)技術(shù)在測(cè)井?dāng)?shù)據(jù)預(yù)測(cè)與模擬中的應(yīng)用
- 深度解析與學(xué)習(xí)應(yīng)用-模型樹
- 深度學(xué)習(xí)中的遷移學(xué)習(xí):應(yīng)用與實(shí)踐
- 深度強(qiáng)化學(xué)習(xí):原理、算法與應(yīng)用
- 《智能系統(tǒng)與技術(shù)叢書 生成對(duì)抗網(wǎng)絡(luò)入門指南》—1.2.3深度學(xué)習(xí)的應(yīng)用
- 深度學(xué)習(xí)模型編譯技術(shù)
- 《智能系統(tǒng)與技術(shù)叢書 深度學(xué)習(xí)實(shí)踐:基于Caffe的解析》—1深度學(xué)習(xí)簡介
- 深度學(xué)習(xí)的現(xiàn)實(shí)應(yīng)用