- 深度學(xué)習(xí)從粗到細(xì)取特征 內(nèi)容精選 換一換
-
應(yīng)用在其中起到了不可替代的作用。 游戲智能體通常采用深度強(qiáng)化學(xué)習(xí)方法,從0開(kāi)始,通過(guò)與環(huán)境的交互和試錯(cuò),學(xué)會(huì)觀察世界、執(zhí)行動(dòng)作、合作與競(jìng)爭(zhēng)策略。每個(gè)AI智能體是一個(gè)深度神經(jīng)網(wǎng)絡(luò)模型,主要包含如下步驟: 1、通過(guò)GPU分析場(chǎng)景特征(自己,視野內(nèi)隊(duì)友,敵人,小地圖等)輸入狀態(tài)信息(Learner)。來(lái)自:專(zhuān)題手把手教你玩轉(zhuǎn) 人臉識(shí)別 ,初探深度學(xué)習(xí)。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:人臉識(shí)別原理、機(jī)器如何提取圖像的特征。 課程目標(biāo) 通過(guò)本課程學(xué)習(xí),了解機(jī)器學(xué)習(xí)的方法及快速掌握人臉識(shí)別應(yīng)用。 課程大綱 第1節(jié) 機(jī)器學(xué)習(xí)內(nèi)容回顧 第2節(jié) 機(jī)器是如何進(jìn)行圖像分類(lèi) 第3節(jié) 圖像的特征提取 第4節(jié) 初探深度學(xué)習(xí) 第5節(jié)來(lái)自:百科
- 深度學(xué)習(xí)從粗到細(xì)取特征 相關(guān)內(nèi)容
-
新增系統(tǒng)函數(shù),如:重復(fù)表分類(lèi)合計(jì)/分類(lèi)平均、重復(fù)表上一行/第一行/最后一行、重復(fù)表最大/最小/最早/最晚、重復(fù)表列不重、【Len】函數(shù)、取年/取月/取日/取星期幾/取日期/取時(shí)間/取整、用戶(hù)自定義函數(shù)等。極大增強(qiáng)了表單的業(yè)務(wù)計(jì)算處理能力,拓寬了應(yīng)用范圍。 ● 新增系統(tǒng)日期變量/組織變量,支持多組織對(duì)來(lái)自:云商店,減少火災(zāi)隱患。 方案優(yōu)勢(shì) 1. 行業(yè)應(yīng)用上算法開(kāi)發(fā)經(jīng)驗(yàn)積累豐富:算法會(huì)自動(dòng)利用相關(guān)先驗(yàn)知識(shí)對(duì)深度學(xué)習(xí)模型的檢測(cè)結(jié)果進(jìn)行判別,排除誤檢測(cè),準(zhǔn)確可靠。利用數(shù)字圖像處理技術(shù)和先進(jìn)的深度學(xué)習(xí)技術(shù),可對(duì)廚房進(jìn)行全天候智能監(jiān)測(cè)。 2. 針對(duì)客戶(hù)需求進(jìn)行定制化功能開(kāi)發(fā):針對(duì)不同行業(yè)應(yīng)用需求,來(lái)自:云商店
- 深度學(xué)習(xí)從粗到細(xì)取特征 更多內(nèi)容
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類(lèi) 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科它們還僅允許從HTTP服務(wù)器發(fā)送和接收請(qǐng)求的網(wǎng)頁(yè)的端口打開(kāi)或關(guān)閉。這就是為什么Web應(yīng)用程序防火墻可以有效防止SQL注入,會(huì)話劫持和跨站點(diǎn)腳本(XSS)等攻擊。 Web應(yīng)用防火墻 WAF 華為云Web應(yīng)用防火墻WAF對(duì)網(wǎng)站業(yè)務(wù)流量進(jìn)行多維度檢測(cè)和防護(hù),結(jié)合深度機(jī)器學(xué)習(xí)智能識(shí)別惡意請(qǐng)求特征和防御未知威脅來(lái)自:百科WAF面臨的挑戰(zhàn) WAF當(dāng)前需要應(yīng)對(duì)一個(gè)挑戰(zhàn)就是入侵檢測(cè)識(shí)別率的問(wèn)題,這個(gè)指標(biāo)不同的廠商都有不同的計(jì)算方式,并不是一個(gè)容易衡量的指標(biāo)。因?yàn)?span style='color:#C7000B'>從攻擊者的角度,攻擊是具有相當(dāng)?shù)碾[蔽性的,對(duì)于網(wǎng)頁(yè)掛馬、新型病毒的植入,Web應(yīng)用防火墻容易漏報(bào)誤報(bào);對(duì)于從來(lái)沒(méi)有被發(fā)現(xiàn)過(guò)、未知的攻擊方式,只來(lái)自:百科一句話識(shí)別 :可以實(shí)現(xiàn)1分鐘以?xún)?nèi)音頻到文字的轉(zhuǎn)換。對(duì)于用戶(hù)上傳的二進(jìn)制音頻格式數(shù)據(jù),系統(tǒng)經(jīng)過(guò)處理,生成語(yǔ)音對(duì)應(yīng)的文字。 錄音文件識(shí)別:對(duì)于錄制的長(zhǎng)語(yǔ)音進(jìn)行識(shí)別,轉(zhuǎn)寫(xiě)成文字,提供不同領(lǐng)域模型,具備良好的可擴(kuò)展性,支持熱詞定制。 ASRC優(yōu)勢(shì) 高識(shí)別率 基于深度學(xué)習(xí)技術(shù),對(duì)特定領(lǐng)域場(chǎng)景和語(yǔ)料進(jìn)行優(yōu)化,識(shí)別率達(dá)到業(yè)界領(lǐng)先。來(lái)自:百科圖像搜索 ( Image Search ):基于領(lǐng)先的深度學(xué)習(xí)與 圖像識(shí)別 技術(shù),結(jié)合不同應(yīng)用業(yè)務(wù)和行業(yè)場(chǎng)景,利用特征向量化與搜索能力,幫助客戶(hù)從指定圖庫(kù)中搜索相同或相似的圖片。 課程簡(jiǎn)介 本課程主要內(nèi)容包括圖像搜索服務(wù)介紹和基本操作。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),了解圖像搜索的特性、解決方案等,并掌握其申請(qǐng)和調(diào)用方法。來(lái)自:百科云知識(shí) 領(lǐng)取/購(gòu)買(mǎi)優(yōu)學(xué)院學(xué)習(xí)購(gòu)買(mǎi)學(xué)習(xí)卡常見(jiàn)問(wèn)題 領(lǐng)取/購(gòu)買(mǎi)優(yōu)學(xué)院學(xué)習(xí)購(gòu)買(mǎi)學(xué)習(xí)卡常見(jiàn)問(wèn)題 時(shí)間:2021-04-08 11:37:24 云市場(chǎng) 嚴(yán)選商城 行業(yè)解決方案 教育 使用指南 商品鏈接:優(yōu)學(xué)院平臺(tái);服務(wù)商:北京文華在線教育科技股份有限公司 雖然購(gòu)買(mǎi)學(xué)習(xí)卡的操作比較簡(jiǎn)單,但是同來(lái)自:云商店圖像處理基本任務(wù) 第5章 特征提取與傳統(tǒng)圖像處理算法 第6章 深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò) 第7章 圖像處理實(shí)驗(yàn) 華為云開(kāi)發(fā)者學(xué)堂 華為官方云計(jì)算技術(shù)培訓(xùn)學(xué)習(xí)平臺(tái),致力于打造精品課程,在線實(shí)驗(yàn),考試及認(rèn)證一站式云計(jì)算技術(shù)人才培訓(xùn)平臺(tái),打造了“學(xué)、練、考、證”一站式學(xué)習(xí)與體驗(yàn)平臺(tái),為用戶(hù)提供來(lái)自:百科Developer(正在開(kāi)發(fā)中,敬請(qǐng)期待) 在線課程 完成使命認(rèn)證即可免費(fèi)使用 《人人學(xué)IoT》 本課程從物聯(lián)網(wǎng)的背景知識(shí)引入,通過(guò)物聯(lián)網(wǎng)概述到“云-管-端“的課程體系,涵蓋華為物聯(lián)網(wǎng)認(rèn)證60%的知識(shí)點(diǎn),帶大家從華為物聯(lián)網(wǎng)入門(mén)到精通。 初學(xué)入門(mén)課程 《初識(shí)華為云IoT Studio》 IoT開(kāi)發(fā)者服務(wù)(IoT來(lái)自:專(zhuān)題華為 云安全 架構(gòu) 動(dòng)手實(shí)驗(yàn) 真實(shí)環(huán)境實(shí)操體驗(yàn),助你快速上手云安全操作 初探CTF三大題型(MISC+Reverse+Crypto) 該實(shí)驗(yàn)旨在讓用戶(hù)體驗(yàn)到CTF奪旗賽中MISC、Reverse、Crypto類(lèi)型題目的做法和技巧 MISC操作 | Reverse操作 | Crypto操作 通過(guò)靶場(chǎng)平臺(tái)演練增強(qiáng)安全攻防意識(shí)來(lái)自:專(zhuān)題將訓(xùn)練完成后的算法加載到AI攝像機(jī)內(nèi)部,利用攝像機(jī)內(nèi)部AI芯片強(qiáng)大的分析推理能力,對(duì)攝像機(jī)拍攝到的視頻畫(huà)面(支持夜視功能)進(jìn)行實(shí)時(shí)分析,按照?qǐng)鼍耙?guī)定要求對(duì)畫(huà)面中是否有人員在禁止打手機(jī)場(chǎng)景下打手機(jī)的違章行為進(jìn)行準(zhǔn)確判斷。帶有該算法的智能AI攝像機(jī)可部署到大量場(chǎng)景,為高壓室、動(dòng)力機(jī)房等工業(yè)領(lǐng)域中禁止打手機(jī)的環(huán)境提供安全保障。來(lái)自:云商店《基于 物聯(lián)網(wǎng)平臺(tái) 的自販機(jī)銷(xiāo)量分析》 在線課程 完成使命認(rèn)證即可免費(fèi)使用 《人人學(xué)IoT》 本課程從物聯(lián)網(wǎng)的背景知識(shí)引入,通過(guò)物聯(lián)網(wǎng)概述到“云-管-端“的課程體系,涵蓋華為物聯(lián)網(wǎng)認(rèn)證60%的知識(shí)點(diǎn),帶大家從華為物聯(lián)網(wǎng)入門(mén)到精通。 初學(xué)入門(mén)課程 《初識(shí)華為云IoT Studio》 IoT開(kāi)發(fā)者服務(wù)(IoT來(lái)自:專(zhuān)題I技術(shù)對(duì)現(xiàn)場(chǎng)的視頻進(jìn)行實(shí)時(shí)分析,基于大規(guī)模工程機(jī)械車(chē)輛圖片數(shù)據(jù)檢測(cè)訓(xùn)練,將算法加載到攝像機(jī)內(nèi)部。 利用深度學(xué)習(xí)能力進(jìn)行模型訓(xùn)練,實(shí)現(xiàn)了對(duì)工程機(jī)械車(chē)輛的檢測(cè),從視頻目標(biāo)分割和特征提取兩個(gè)方面進(jìn)行算法優(yōu)化,提高運(yùn)算效率,增強(qiáng)適用性,完成對(duì)工程車(chē)輛類(lèi)型的檢測(cè),工程車(chē)輛智能檢測(cè)算法可檢測(cè)來(lái)自:云商店根據(jù)授權(quán)精細(xì)程度分為角色和策略 角色: IAM 最初提供的一種根據(jù)用戶(hù)的工作職能定義權(quán)限的粗粒度授權(quán)機(jī)制。該機(jī)制以服務(wù)為粒度,提供有限的服務(wù)相關(guān)角色用于授權(quán) IAM最新提供的一種細(xì)粒度授權(quán)的能力,可以精確到具體服務(wù)的操作、資源以及請(qǐng)求條件等?;诓呗缘氖跈?quán)是一種更加靈活的授權(quán)方式,能夠滿(mǎn)足企業(yè)對(duì)權(quán)限最小化的安全管控要求。來(lái)自:專(zhuān)題深度學(xué)習(xí)計(jì)算服務(wù)平臺(tái)是中科弘云面向有定制化AI需求的行業(yè)用戶(hù),推出的 AI開(kāi)發(fā)平臺(tái) ,提供從樣本標(biāo)注、模型訓(xùn)練、模型部署的一站式AI開(kāi)發(fā)能力,幫助用戶(hù)快速訓(xùn)練和部署模型,管理全周期AI工作流。平臺(tái)為開(kāi)發(fā)者設(shè)計(jì)了眾多可幫助降低開(kāi)發(fā)成本的開(kāi)發(fā)工具與框架,例如AI數(shù)據(jù)集、AI模型與算力等。來(lái)自:其他
- 深度學(xué)習(xí)算法:從基礎(chǔ)到實(shí)踐
- 深度學(xué)習(xí)之從Python到C++
- 《深度學(xué)習(xí)筆記》五 - 從分類(lèi)到目標(biāo)檢測(cè)
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》
- 帶你深入學(xué)習(xí)java內(nèi)部類(lèi)_匿名類(lèi),細(xì)到不能再細(xì)~
- 深度學(xué)習(xí)修煉(一)——從機(jī)器學(xué)習(xí)轉(zhuǎn)向深度學(xué)習(xí)
- 從數(shù)據(jù)探索到深度學(xué)習(xí):Python中的全面指南
- 《深度剖析:特征工程—機(jī)器學(xué)習(xí)的隱秘基石》
- 語(yǔ)音情感識(shí)別之手工特征深度學(xué)習(xí)方法
- 基于深度學(xué)習(xí)的油藏地質(zhì)特征提取方法