- 深度學(xué)習(xí)標(biāo)準(zhǔn)模型 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)標(biāo)準(zhǔn)模型 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺翻譯、刷臉支付、人臉考勤……不知不覺,深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 深度學(xué)習(xí)標(biāo)準(zhǔn)模型 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡(jiǎn)介 ModelArts模型訓(xùn)練,俗稱“建模”,指通過(guò)分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測(cè)、評(píng)價(jià)等結(jié)果。來(lái)自:專題華為云計(jì)算 云知識(shí) 邏輯模型和物理模型的對(duì)比 邏輯模型和物理模型的對(duì)比 時(shí)間:2021-06-02 14:37:26 數(shù)據(jù)庫(kù) 邏輯模型與物理模型的對(duì)比如下: 名稱定義:邏輯模型取名按照業(yè)務(wù)規(guī)則和現(xiàn)實(shí)世界對(duì)象的命名規(guī)范來(lái)取名;物理模型需要考慮到數(shù)據(jù)庫(kù)產(chǎn)品限制,比如不能出現(xiàn)非法字符,不能使用數(shù)據(jù)庫(kù)關(guān)鍵詞,不能超長(zhǎng)等約束;來(lái)自:百科華為云計(jì)算 云知識(shí) 標(biāo)準(zhǔn)存儲(chǔ) 標(biāo)準(zhǔn)存儲(chǔ) 時(shí)間:2020-12-24 15:45:23 標(biāo)準(zhǔn)存儲(chǔ)( OBS Standard)是OBS存儲(chǔ)類別的一種,訪問(wèn)時(shí)延低,吞吐量高,適用于有大量熱點(diǎn)文件(平均一個(gè)月訪問(wèn)多次)或小文件(小于1MB),且需要頻繁訪問(wèn)數(shù)據(jù)的業(yè)務(wù)場(chǎng)景,例如:大數(shù)據(jù)、移動(dòng)應(yīng)用、熱點(diǎn)視頻、社交圖片等。來(lái)自:百科業(yè)務(wù)數(shù)據(jù)標(biāo)準(zhǔn) 業(yè)務(wù)數(shù)據(jù)標(biāo)準(zhǔn) 時(shí)間:2020-11-17 17:59:37 業(yè)務(wù)數(shù)據(jù)標(biāo)準(zhǔn)(Business Data Standard,BDS)用于描述公司層面需共同遵守的數(shù)據(jù)含義和業(yè)務(wù)規(guī)則。其描述了公司層面對(duì)某個(gè)數(shù)據(jù)的共同理解,這些理解一旦確定下來(lái),就應(yīng)作為企業(yè)層面的標(biāo)準(zhǔn)在企業(yè)內(nèi)被共同遵守。來(lái)自:百科云知識(shí) SFS的計(jì)費(fèi)標(biāo)準(zhǔn) SFS的計(jì)費(fèi)標(biāo)準(zhǔn) 時(shí)間:2021-07-02 09:41:19 彈性文件服務(wù)的計(jì)費(fèi)模式,包括按需、包年包月兩種計(jì)費(fèi)方式。 默認(rèn)為按需計(jì)費(fèi)模式。即創(chuàng)建文件系統(tǒng)免費(fèi),按實(shí)際使用的存儲(chǔ)容量和時(shí)長(zhǎng)收費(fèi),以小時(shí)為單位,按每小時(shí)整點(diǎn)結(jié)算,不設(shè)最低消費(fèi)標(biāo)準(zhǔn)。結(jié)算時(shí),時(shí)長(zhǎng)不足1小時(shí)的,按1小時(shí)計(jì)費(fèi)。來(lái)自:百科高級(jí)加密標(biāo)準(zhǔn) 高級(jí)加密標(biāo)準(zhǔn) 時(shí)間:2020-12-24 10:08:10 一種對(duì)稱分組密碼算法,由美國(guó)國(guó)家標(biāo)準(zhǔn)與技術(shù)研究院(NIST)于2001年11月26日發(fā)布,是對(duì)稱密鑰加密中最流行的算法之一。高級(jí)加密標(biāo)準(zhǔn)算法從很多方面解決了令人擔(dān)憂的問(wèn)題。實(shí)際上,攻擊 數(shù)據(jù)加密 標(biāo)準(zhǔn)的那些手段來(lái)自:百科
- 深度學(xué)習(xí)煉丹-數(shù)據(jù)標(biāo)準(zhǔn)化
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——3.2 LeNet的標(biāo)準(zhǔn)模型
- 深度學(xué)習(xí)模型編譯技術(shù)
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)-通用模型調(diào)試技巧
- 利用深度學(xué)習(xí)建立流失模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 深度解析與學(xué)習(xí)應(yīng)用-模型樹
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:元學(xué)習(xí)與模型無(wú)關(guān)優(yōu)化(MAML)