- 深度學(xué)習(xí)標(biāo)注圖片 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識,其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)標(biāo)注圖片 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科來自:百科
- 深度學(xué)習(xí)標(biāo)注圖片 更多內(nèi)容
-
華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科而提升結(jié)算效率。模型訓(xùn)練、更新的流程自動(dòng)化,只需要客戶自己上傳標(biāo)注圖片,就可以在線完成模型訓(xùn)練、評估、發(fā)布。 票據(jù)識別 特點(diǎn):對各種格式的票據(jù)圖片,可制作模板實(shí)現(xiàn)關(guān)鍵字段的自動(dòng)識別和提取。 優(yōu)勢:支持不同格式票據(jù)圖片的自動(dòng)識別和結(jié)構(gòu)化提取。通過可視化界面操作,輕松指定識別區(qū)域,完成模板設(shè)計(jì)并調(diào)用服務(wù)接口。來自:百科ModelArts數(shù)據(jù)準(zhǔn)備全流程: 數(shù)據(jù)標(biāo)注 模型訓(xùn)練過程中需要大量已標(biāo)注的數(shù)據(jù),因此在模型訓(xùn)練之前需要進(jìn)行數(shù)據(jù)標(biāo)注作業(yè)。ModelArts為用戶提供了標(biāo)注數(shù)據(jù)的能力: 人工標(biāo)注:對于不同類型(圖片、音頻、文本和視頻)的數(shù)據(jù),用戶可以選擇不同的標(biāo)注類型。 智能標(biāo)注:智能標(biāo)注是指基于當(dāng)前標(biāo)注階段的標(biāo)簽及圖片學(xué)習(xí)訓(xùn)練來自:專題了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對AI開發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理 提供了一套高效便捷的管理和標(biāo)注數(shù)據(jù)集框架。不僅支持圖片、文本、語音、視頻等多種數(shù)據(jù)類型,涵蓋圖像分類、目標(biāo)檢測、音頻分割、文本分類等多個(gè)標(biāo)注場景,可適用于各種AI項(xiàng)目,如來自:百科<<貨車異常行駛檢測>> <<能見度檢測算法>> AI開發(fā)平臺 ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺,為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。來自:云商店圖1功能總覽 ModelArts特色功能如下所示: 數(shù)據(jù)治理 支持?jǐn)?shù)據(jù)篩選、標(biāo)注等數(shù)據(jù)處理,提供數(shù)據(jù)集版本管理,特別是深度學(xué)習(xí)的大數(shù)據(jù)集,讓訓(xùn)練結(jié)果可重現(xiàn)。 極“快”致“簡”模型訓(xùn)練 自研的MoXing深度學(xué)習(xí)框架,更高效更易用,大大提升訓(xùn)練速度。 云邊端多場景部署 支持模型部署到多來自:百科
- 深度學(xué)習(xí)標(biāo)注工具Labelme的使用
- 深度學(xué)習(xí)圖片分類CNN模板
- 技術(shù)綜述二:標(biāo)注數(shù)據(jù)不足下的深度學(xué)習(xí)方法概述
- ModelArts智能標(biāo)注提升70%數(shù)據(jù)標(biāo)注效率學(xué)習(xí)分享
- 圖片標(biāo)注軟件labelImg使用指南
- 如何使用labelImg標(biāo)注數(shù)據(jù)集,最詳細(xì)的深度學(xué)習(xí)標(biāo)簽教程
- 主動(dòng)學(xué)習(xí)解決數(shù)據(jù)標(biāo)注難題
- 主動(dòng)學(xué)習(xí)解決數(shù)據(jù)標(biāo)注難題
- 《深度學(xué)習(xí)之圖像識別:核心技術(shù)與案例實(shí)戰(zhàn)》 ——3.4.2 數(shù)據(jù)標(biāo)注
- 《深度學(xué)習(xí)之圖像識別核心技術(shù)與案例實(shí)戰(zhàn)》—3.4.2 數(shù)據(jù)標(biāo)注