- 深度學(xué)習(xí) 與 人工特征 結(jié)合 內(nèi)容精選 換一換
-
來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見的問題。 課程大綱 1. 深度學(xué)習(xí)簡(jiǎn)介來自:百科
- 深度學(xué)習(xí) 與 人工特征 結(jié)合 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科
- 深度學(xué)習(xí) 與 人工特征 結(jié)合 更多內(nèi)容
-
經(jīng)網(wǎng)絡(luò)開發(fā)和訓(xùn)練,可謂再好不過了。如何使用深度學(xué)習(xí)框架MindSpore進(jìn)行模型開發(fā)與訓(xùn)練?又如何在ModelArts平臺(tái)訓(xùn)練一個(gè)可以用于識(shí)別手寫數(shù)字的模型呢?讓我們來一探究竟吧。 數(shù)據(jù)集的選擇與準(zhǔn)備 機(jī)器學(xué)習(xí)中的傳統(tǒng)機(jī)器學(xué)習(xí)和深度學(xué)習(xí)都是數(shù)據(jù)驅(qū)動(dòng)的研究領(lǐng)域,需要基于大量的歷史數(shù)來自:百科容與應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過本實(shí)驗(yàn)將了解如何使用Keras和Tensorflow構(gòu)建DFCNN的 語(yǔ)音識(shí)別 神經(jīng)網(wǎng)絡(luò),并且熟悉整個(gè)處理流程,包括數(shù)據(jù)預(yù)處理、模型訓(xùn)練、模型保存和模型預(yù)測(cè)等環(huán)節(jié)。 實(shí)驗(yàn)摘要 實(shí)驗(yàn)準(zhǔn)備:登錄華為云賬號(hào) 1. OBS 準(zhǔn)備 2.ModelArts應(yīng)用 3來自:百科故障識(shí)別與根因定位服務(wù)實(shí)操 該實(shí)驗(yàn)旨在指導(dǎo)用戶短時(shí)間內(nèi)熟悉并掌握故障識(shí)別與根因定位服務(wù)使用方式。 使用昇騰 彈性云服務(wù)器 實(shí)現(xiàn)黑白圖像上色應(yīng)用(C++) 本實(shí)驗(yàn)主要介紹基于AI1型服務(wù)器的黑白圖像上色項(xiàng)目,并部署在AI1型服務(wù)器上執(zhí)行的方法。 基于昇騰彈性云服務(wù)器的人工智能應(yīng)用開發(fā)實(shí)驗(yàn)(Python)來自:專題華為云計(jì)算 云知識(shí) 計(jì)算機(jī)視覺基礎(chǔ):深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò) 計(jì)算機(jī)視覺基礎(chǔ):深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò) 時(shí)間:2020-12-17 09:56:23 通過學(xué)習(xí),您將掌握計(jì)算機(jī)視覺的基本概念和主要知識(shí)點(diǎn),并且對(duì)于計(jì)算機(jī)視覺和廣義人工智能的方法論有一定的認(rèn)識(shí),初步具備判斷計(jì)算機(jī)視覺是否適合解決特定問題的能力。來自:百科溫馨提示:詳情信息請(qǐng)以課程詳情頁(yè)信息為準(zhǔn)。 AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。來自:百科
- 深度學(xué)習(xí)算法中的集成學(xué)習(xí)(Ensemble Learning)與深度學(xué)習(xí)的結(jié)合
- 人工智能深度學(xué)習(xí)
- 人工智能中的深度學(xué)習(xí):原理與實(shí)踐
- 深度學(xué)習(xí) - 深度學(xué)習(xí) (人工神經(jīng)網(wǎng)絡(luò)的研究的概念)
- 邊緣智能:深度學(xué)習(xí)與邊緣計(jì)算的完美結(jié)合
- 機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、人工智能三步走,人工智能必須知道的幾種深度學(xué)習(xí)算法
- 《深度剖析:特征工程—機(jī)器學(xué)習(xí)的隱秘基石》
- 什么是人工智能領(lǐng)域的深度學(xué)習(xí)?
- 語(yǔ)音情感識(shí)別之手工特征深度學(xué)習(xí)方法
- 基于深度學(xué)習(xí)的油藏地質(zhì)特征提取方法