- 深度學(xué)習(xí) 圖像分類(lèi)的實(shí)現(xiàn) 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類(lèi)別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí) 圖像分類(lèi)的實(shí)現(xiàn) 相關(guān)內(nèi)容
-
本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章來(lái)自:百科
- 深度學(xué)習(xí) 圖像分類(lèi)的實(shí)現(xiàn) 更多內(nèi)容
-
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類(lèi)等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科本實(shí)驗(yàn)指導(dǎo)用戶基于Notebook來(lái)學(xué)習(xí)Python語(yǔ)言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類(lèi)的魔法方法的使用。 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與來(lái)自:專(zhuān)題本實(shí)驗(yàn)指導(dǎo)用戶基于Notebook來(lái)學(xué)習(xí)Python語(yǔ)言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類(lèi)的魔法方法的使用。 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與來(lái)自:專(zhuān)題本課程為AI全棧成長(zhǎng)計(jì)劃第二階段課程:AI進(jìn)階篇。本階段將由華為AI專(zhuān)家?guī)?span style='color:#C7000B'>學(xué)習(xí)AI開(kāi)發(fā)兩大熱門(mén)領(lǐng)域:圖像分類(lèi)和物體檢測(cè)的模型開(kāi)發(fā),正式入門(mén)AI代碼開(kāi)發(fā)! 目標(biāo)學(xué)員 高校學(xué)生、個(gè)人開(kāi)發(fā)者中的AI愛(ài)好者、學(xué)習(xí)者 課程目標(biāo) 了解、掌握 AI 開(kāi)發(fā)的基本流程,完成常見(jiàn) AI 模型的開(kāi)發(fā)部署。 課程大綱 第1章 全流程 AI開(kāi)發(fā)平臺(tái) 介紹-ModelArts來(lái)自:百科數(shù)據(jù)庫(kù)安全 基礎(chǔ) HCIA- GaussDB 系列課程。數(shù)據(jù)庫(kù)作為核心的基礎(chǔ)軟件,在我們的系統(tǒng)架構(gòu)中處于系統(tǒng)的最末端,它是查詢和存儲(chǔ)數(shù)據(jù)的系統(tǒng),是各業(yè)務(wù)數(shù)據(jù)最終落地的承載者,而當(dāng)今社會(huì)最值錢(qián)的又是擁有大量的數(shù)據(jù),因此其數(shù)據(jù)庫(kù)安全性至關(guān)重要。 立即學(xué)習(xí) 最新文章 替換VolcanoJobreplace來(lái)自:百科另外,5G技術(shù)的應(yīng)用也是VR直播在移動(dòng)化與高清體驗(yàn)方面實(shí)現(xiàn)突破的重要推手。相較于普通的視頻文件,由于VR展示的視角更廣,文件相對(duì)也較大,受網(wǎng)絡(luò)傳輸速率的影響,此前高清VR直播需要通過(guò)高速有線網(wǎng)絡(luò)實(shí)現(xiàn)。用戶無(wú)法通過(guò)移動(dòng)網(wǎng)絡(luò)觀看,也就導(dǎo)致了VR 視頻直播 的用戶覆蓋面較小。5G網(wǎng)絡(luò)的出現(xiàn),帶來(lái)了更高的傳輸速率與超低延遲技來(lái)自:云商店AI開(kāi)發(fā)人員的福音。學(xué)習(xí)本課程,帶你了解AI模型訓(xùn)練,不會(huì)編程、不會(huì)算法、不會(huì)高數(shù),一樣可以構(gòu)建出自己專(zhuān)屬的AI模型。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:AI如何滿足定制化需求、從Idea到落地開(kāi)發(fā)者所面臨的挑戰(zhàn)、極“快”致“簡(jiǎn)單”的模型訓(xùn)練。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí)使學(xué)員掌握AI模型訓(xùn)練原理及實(shí)現(xiàn)過(guò)程。來(lái)自:百科第5節(jié) 人臉識(shí)別 的原理及應(yīng)用場(chǎng)景 第6節(jié) 快速構(gòu)建專(zhuān)屬人臉庫(kù) 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開(kāi)發(fā)者,致力于讓云無(wú)處不在,讓智能無(wú)所不及,共建智能世界云底座。來(lái)自:百科華為云 圖像識(shí)別 Image:技術(shù)服務(wù)提供商的首選 華為云圖像識(shí)別Image:技術(shù)服務(wù)提供商的首選 時(shí)間:2023-11-06 11:40:00 在這個(gè)信息爆炸的時(shí)代,圖像和視頻的數(shù)據(jù)量正在以驚人的速度增長(zhǎng)?;ヂ?lián)網(wǎng)是自由開(kāi)放的社區(qū),里面什么人都有,所以在與很多圖像處理需求的客戶深度溝通后,其緊迫性與重要來(lái)自:百科
- 深度學(xué)習(xí)實(shí)戰(zhàn)(二):AlexNet實(shí)現(xiàn)花圖像分類(lèi)
- OpenCV中的深度學(xué)習(xí)圖像分類(lèi)
- 深度學(xué)習(xí)實(shí)戰(zhàn)(一):LeNet實(shí)現(xiàn)CIFAR-10圖像分類(lèi)
- 使用深度學(xué)習(xí)進(jìn)行圖像分類(lèi)的簡(jiǎn)介
- 深度學(xué)習(xí)模型完成圖像分類(lèi)小項(xiàng)目
- 深度學(xué)習(xí)matlab圖像分類(lèi),手把手教程
- 深度學(xué)習(xí)入門(mén)篇,簡(jiǎn)單的實(shí)例講明白圖像分類(lèi)。
- Numpy實(shí)現(xiàn)深度學(xué)習(xí)Model
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——2.3 基于TensorFlow框架的圖像分類(lèi)實(shí)現(xiàn)(ResNet-34)
- 實(shí)踐深度學(xué)習(xí):構(gòu)建一個(gè)簡(jiǎn)單的圖像分類(lèi)器
- 使用自動(dòng)學(xué)習(xí)實(shí)現(xiàn)圖像分類(lèi)
- 開(kāi)發(fā)深度學(xué)習(xí)模型
- 基于CodeArts IDE Online開(kāi)發(fā)并使用模型
- 使用自動(dòng)學(xué)習(xí)實(shí)現(xiàn)預(yù)測(cè)分析
- 自動(dòng)學(xué)習(xí)簡(jiǎn)介
- 歷史待下線
- 部署NGC容器環(huán)境以構(gòu)建深度學(xué)習(xí)開(kāi)發(fā)環(huán)境
- 創(chuàng)建圖像分類(lèi)項(xiàng)目
- 使用ModelArts Standard自動(dòng)學(xué)習(xí)實(shí)現(xiàn)垃圾分類(lèi)
- 訓(xùn)練圖像分類(lèi)模型