- 深度學(xué)習(xí) 時(shí)間序列特征提取 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類(lèi)型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí) 時(shí)間序列特征提取 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 深度學(xué)習(xí) 時(shí)間序列特征提取 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) 時(shí)間:2020-12-15 15:23:12 深度學(xué)習(xí)是一種以人工神經(jīng)網(wǎng)絡(luò)為架構(gòu),對(duì)數(shù)據(jù)進(jìn)行表征學(xué)習(xí)的算法。目前,在圖像、語(yǔ)音識(shí)別、自然語(yǔ)言處理、強(qiáng)化學(xué)習(xí)等許多技術(shù)領(lǐng)域中,深度學(xué)習(xí)獲得了廣泛的應(yīng)用,并且在某些問(wèn)來(lái)自:百科
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科
、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科
實(shí)戰(zhàn)篇:刷臉時(shí)代已經(jīng)到來(lái),你準(zhǔn)備好了嗎? 時(shí)間:2020-12-14 16:36:37 手把手教你玩轉(zhuǎn) 人臉識(shí)別 ,初探深度學(xué)習(xí)。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:人臉識(shí)別原理、機(jī)器如何提取圖像的特征。 課程目標(biāo) 通過(guò)本課程學(xué)習(xí),了解機(jī)器學(xué)習(xí)的方法及快速掌握人臉識(shí)別應(yīng)用。 課程大綱 第1節(jié) 機(jī)器學(xué)習(xí)內(nèi)容回顧 第2節(jié)來(lái)自:百科
圖像處理基本任務(wù) 第5章 特征提取與傳統(tǒng)圖像處理算法 第6章 深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò) 第7章 圖像處理實(shí)驗(yàn) 華為云開(kāi)發(fā)者學(xué)堂 華為官方云計(jì)算技術(shù)培訓(xùn)學(xué)習(xí)平臺(tái),致力于打造精品課程,在線(xiàn)實(shí)驗(yàn),考試及認(rèn)證一站式云計(jì)算技術(shù)人才培訓(xùn)平臺(tái),打造了“學(xué)、練、考、證”一站式學(xué)習(xí)與體驗(yàn)平臺(tái),為用戶(hù)提供來(lái)自:百科
遷移實(shí)施的關(guān)鍵指標(biāo): 業(yè)務(wù)中斷時(shí)間 下圖主要從離線(xiàn)遷移和在線(xiàn)遷移的對(duì)比上相對(duì)形象的做了遷移過(guò)程中,業(yè)務(wù)流程及業(yè)務(wù)停機(jī)時(shí)間的展示。 停機(jī)時(shí)間 = 最后一次數(shù)據(jù)增量同步時(shí)間 + 業(yè)務(wù)切換時(shí)間 業(yè)務(wù)切換:選在業(yè)務(wù)量最低時(shí)進(jìn)行,最大幅度降低業(yè)務(wù)切換對(duì)用戶(hù)感受的影響 學(xué)習(xí)了解更多可前往查看云學(xué)院《云遷移基礎(chǔ)》課程。來(lái)自:百科
征識(shí)別方法。其通過(guò)分析提取用戶(hù)人臉圖像數(shù)字特征產(chǎn)生樣本特征序列,并將該樣本特征序列與已存儲(chǔ)的模板特征序列進(jìn)行比對(duì),用以識(shí)別用戶(hù)身份。 2.3 語(yǔ)音識(shí)別 通過(guò)各種技術(shù),把語(yǔ)音信號(hào)轉(zhuǎn)變?yōu)橄鄳?yīng)的文本或命令的過(guò)程。主要包括特征提取技術(shù)、模式匹配準(zhǔn)則及模型訓(xùn)練技術(shù)三個(gè)方面。 2.4 TTS來(lái)自:云商店
技術(shù)對(duì)現(xiàn)場(chǎng)的視頻進(jìn)行實(shí)時(shí)分析,基于大規(guī)模工程機(jī)械車(chē)輛圖片數(shù)據(jù)檢測(cè)訓(xùn)練,將算法加載到攝像機(jī)內(nèi)部。 利用深度學(xué)習(xí)能力進(jìn)行模型訓(xùn)練,實(shí)現(xiàn)了對(duì)工程機(jī)械車(chē)輛的檢測(cè),從視頻目標(biāo)分割和特征提取兩個(gè)方面進(jìn)行算法優(yōu)化,提高運(yùn)算效率,增強(qiáng)適用性,完成對(duì)工程車(chē)輛類(lèi)型的檢測(cè),工程車(chē)輛智能檢測(cè)算法可檢測(cè)的來(lái)自:云商店
生產(chǎn)物料預(yù)估 基于歷史物料數(shù)據(jù),對(duì)生產(chǎn)所需物料進(jìn)行準(zhǔn)確分析預(yù)估,降低倉(cāng)儲(chǔ)周期,提升效率 優(yōu)勢(shì) 深度算法優(yōu)化 基于業(yè)界時(shí)間序列算法模型,并結(jié)合華為供應(yīng)鏈深度優(yōu)化 一鍵式發(fā)布 機(jī)器學(xué)習(xí)、推理平臺(tái)預(yù)集成,算法模型可以一鍵式發(fā)布應(yīng)用,降低二次開(kāi)發(fā)工作 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科
華為云計(jì)算 云知識(shí) 什么是 圖像搜索 什么是圖像搜索 時(shí)間:2020-09-16 11:27:14 圖像搜索( Image Search )基于深度學(xué)習(xí)與 圖像識(shí)別 技術(shù),結(jié)合不同應(yīng)用業(yè)務(wù)和行業(yè)場(chǎng)景,利用特征向量化與搜索能力,幫助您從指定圖庫(kù)中搜索相同或相似的圖片。 圖像搜索服務(wù)以開(kāi)放API(Application來(lái)自:百科
失, GaussDB 獲取時(shí)間是什么? 幫助文檔 云數(shù)據(jù)庫(kù) GaussDB時(shí)間/日期類(lèi)型 時(shí)間/日期類(lèi)型 GaussDB支持的日期/時(shí)間類(lèi)型請(qǐng)參見(jiàn)表1。該類(lèi)型的操作符和內(nèi)置函數(shù)請(qǐng)參見(jiàn)時(shí)間和日期處理函數(shù)和操作符。 說(shuō)明:如果其他的數(shù)據(jù)庫(kù)時(shí)間格式和GaussDB的時(shí)間格式不一致,可通過(guò)修改來(lái)自:專(zhuān)題
- 基于LSTM深度學(xué)習(xí)網(wǎng)絡(luò)的時(shí)間序列分析matlab仿真
- 基于LSTM深度學(xué)習(xí)網(wǎng)絡(luò)的時(shí)間序列預(yù)測(cè)matlab仿真
- 2022美賽單變量深度學(xué)習(xí)LSTM 時(shí)間序列分析預(yù)測(cè)
- 基于深度學(xué)習(xí)的油藏地質(zhì)特征提取方法
- 基于CNN+LSTM深度學(xué)習(xí)網(wǎng)絡(luò)的時(shí)間序列預(yù)測(cè)matlab仿真
- ASK-HAR:多尺度特征提取的深度學(xué)習(xí)模型
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—3.2 序列填充
- 蛋白序列 | 基于深度學(xué)習(xí)的蛋白質(zhì)序列家族分類(lèi)
- 時(shí)間序列預(yù)測(cè)模型
- 【數(shù)學(xué)建?!可疃葘W(xué)習(xí)核心技術(shù)精講100篇(八十三)-時(shí)間序列分解和預(yù)測(cè)