- 深度學(xué)習(xí) 漢字結(jié)構(gòu)相似度 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí) 漢字結(jié)構(gòu)相似度 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科網(wǎng)絡(luò)的基本結(jié)構(gòu),可謂入門級(jí)神經(jīng)網(wǎng)絡(luò)模型。本次實(shí)踐使用的模型正是LeNet-5。 LeNet-5由輸入層、卷積層、池化層和全連接層組成。輸入層用于輸入數(shù)據(jù);卷積層通過(guò)卷積運(yùn)算對(duì)輸入進(jìn)行局部特征提??;池化層通過(guò)下采樣的方式降低特征圖的分辨率,從而降低輸出對(duì)位置和形變的敏感度,同時(shí)還可來(lái)自:百科
- 深度學(xué)習(xí) 漢字結(jié)構(gòu)相似度 更多內(nèi)容
-
為了解決真實(shí)世界中的問(wèn)題,我們的深度學(xué)習(xí)算法需要巨量的數(shù)據(jù),同時(shí)也需要機(jī)器擁有處理龐大數(shù)據(jù)的能力,在現(xiàn)實(shí)世界中部署神經(jīng)網(wǎng)絡(luò)需要平衡效率和能耗以及成本的關(guān)系。本課程介紹了能耗高效的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。來(lái)自:百科華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科華為云計(jì)算 云知識(shí) DAS 中表結(jié)構(gòu)對(duì)比的操作 DAS中表結(jié)構(gòu)對(duì)比的操作 時(shí)間:2021-05-31 18:02:55 數(shù)據(jù)庫(kù) 在結(jié)構(gòu)方案界面,我們可以對(duì)比兩個(gè)庫(kù)內(nèi)的表的表結(jié)構(gòu),并且可以選擇是否在對(duì)比之后進(jìn)行同步。 步驟1 創(chuàng)建表結(jié)構(gòu)對(duì)比與同步任務(wù); 步驟2 選擇基準(zhǔn)庫(kù)與目標(biāo)庫(kù); 步驟3來(lái)自:百科時(shí)間:2020-09-16 11:27:14 圖像搜索 ( Image Search )基于深度學(xué)習(xí)與 圖像識(shí)別 技術(shù),結(jié)合不同應(yīng)用業(yè)務(wù)和行業(yè)場(chǎng)景,利用特征向量化與搜索能力,幫助您從指定圖庫(kù)中搜索相同或相似的圖片。 圖像搜索服務(wù)以開(kāi)放API(Application Programming I來(lái)自:百科。 云數(shù)據(jù)庫(kù) GaussDB 查詢表 · SELECT語(yǔ)句中禁用慎用通配符字段“*”。 使用通配符字段查詢表時(shí),如果因業(yè)務(wù)或數(shù)據(jù)庫(kù)升級(jí)導(dǎo)致表結(jié)構(gòu)發(fā)生變化,可能出現(xiàn)與業(yè)務(wù)語(yǔ)句不兼容的情況。 因此業(yè)務(wù)應(yīng)指明所需查詢的表字段名稱,避免使用通配符。 · 帶有LIMIT的查詢語(yǔ)句中必須帶有ORDER來(lái)自:專題文字轉(zhuǎn)換成語(yǔ)音 適用于哪些場(chǎng)景 智能問(wèn)答系統(tǒng) 通過(guò)中文分詞、短文本相似度、命名實(shí)體識(shí)別等相關(guān)技術(shù)計(jì)算兩個(gè)問(wèn)題對(duì)的相似度,可解決問(wèn)答、對(duì)話、語(yǔ)料挖掘、知識(shí)庫(kù)構(gòu)建等問(wèn)題。 通過(guò)中文分詞、短文本相似度、命名實(shí)體識(shí)別等相關(guān)技術(shù)計(jì)算兩個(gè)問(wèn)題對(duì)的相似度,可解決問(wèn)答、對(duì)話、語(yǔ)料挖掘、知識(shí)庫(kù)構(gòu)建等問(wèn)題。 文本分析來(lái)自:專題