- 深度學(xué)習(xí) 單模數(shù)據(jù) 多模數(shù)據(jù) 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 云數(shù)據(jù)庫(kù) GaussDB NoSQL多模接口 云數(shù)據(jù)庫(kù) GaussDB NoSQL多模接口 時(shí)間:2020-09-08 10:51:26 云數(shù)據(jù)庫(kù)GaussDB NoSQL是一款基于華為自主研發(fā)的計(jì)算存儲(chǔ)分離架構(gòu)的分布式多模NoSQL數(shù)據(jù)庫(kù)服務(wù)。在華為云高性能來自:百科
- 深度學(xué)習(xí) 單模數(shù)據(jù) 多模數(shù)據(jù) 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科
- 深度學(xué)習(xí) 單模數(shù)據(jù) 多模數(shù)據(jù) 更多內(nèi)容
-
。MNIST數(shù)據(jù)集的原始圖像是黑白的,但在實(shí)際訓(xùn)練中使用數(shù)據(jù)增強(qiáng)后的圖片能夠獲得更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過人工神經(jīng)來自:百科華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科為了解決真實(shí)世界中的問題,我們的深度學(xué)習(xí)算法需要巨量的數(shù)據(jù),同時(shí)也需要機(jī)器擁有處理龐大數(shù)據(jù)的能力,在現(xiàn)實(shí)世界中部署神經(jīng)網(wǎng)絡(luò)需要平衡效率和能耗以及成本的關(guān)系。本課程介紹了能耗高效的深度學(xué)習(xí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。來自:百科并實(shí)現(xiàn)售賣機(jī)的智能化運(yùn)營(yíng),是一個(gè)貫穿數(shù)據(jù)開發(fā)、數(shù)據(jù)采集、數(shù)據(jù)挖掘應(yīng)用的完整項(xiàng)目。 目標(biāo)學(xué)員 希望了解AI與IoT技術(shù)結(jié)合場(chǎng)景實(shí)現(xiàn)方法并掌握其開發(fā)能力的人員。 課程目標(biāo) 通過學(xué)習(xí)本課程,學(xué)員可以對(duì)設(shè)備接入IoT平臺(tái)上報(bào)數(shù)據(jù),基于AI對(duì)設(shè)備上報(bào)數(shù)據(jù)進(jìn)行分析預(yù)測(cè)的實(shí)際應(yīng)用場(chǎng)景有一個(gè)了解。來自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 時(shí)間:2020-12-16 09:52:25 云計(jì)算是未來的方向,云數(shù)據(jù)庫(kù)是解決方案的核心,學(xué)習(xí)本課程掌握華為云數(shù)據(jù)庫(kù)的運(yùn)維管理,數(shù)據(jù)庫(kù)遷移和根據(jù)業(yè)務(wù)場(chǎng)景出具解決方案的能力。 課程簡(jiǎn)介 課程覆蓋了華為云對(duì)各行業(yè)解決方案、數(shù)據(jù)庫(kù)遷移方案和來自:百科數(shù)據(jù)庫(kù)登錄入口_華為GaussDB分布式數(shù)據(jù)庫(kù)免費(fèi)領(lǐng)取 MySQL云數(shù)據(jù)庫(kù) 免費(fèi)數(shù)據(jù)庫(kù) 關(guān)系數(shù)據(jù)庫(kù)管理系統(tǒng)_數(shù)據(jù)庫(kù)管理系統(tǒng)、數(shù)據(jù)庫(kù)應(yīng)用 數(shù)據(jù)庫(kù)軟件免費(fèi)版 云數(shù)據(jù)庫(kù)免費(fèi)_云數(shù)據(jù)庫(kù)免費(fèi)試用 MySQL數(shù)據(jù)庫(kù)免費(fèi)嗎_MySQL數(shù)據(jù)庫(kù) 免費(fèi)試用 MySQL數(shù)據(jù)庫(kù)入門 免費(fèi)云數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù)有哪些 云數(shù)據(jù)庫(kù)和普通數(shù)據(jù)庫(kù) 免費(fèi)數(shù)據(jù)庫(kù)服務(wù)器_免費(fèi)數(shù)據(jù)庫(kù)有哪些來自:專題、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來自:百科數(shù)據(jù)庫(kù)登錄入口_華為GaussDB分布式數(shù)據(jù)庫(kù)免費(fèi)領(lǐng)取 MySQL云數(shù)據(jù)庫(kù) 免費(fèi)數(shù)據(jù)庫(kù) 關(guān)系數(shù)據(jù)庫(kù)管理系統(tǒng)_數(shù)據(jù)庫(kù)管理系統(tǒng)、數(shù)據(jù)庫(kù)應(yīng)用 數(shù)據(jù)庫(kù)軟件免費(fèi)版 云數(shù)據(jù)庫(kù)免費(fèi)_云數(shù)據(jù)庫(kù)免費(fèi)試用 MySQL數(shù)據(jù)庫(kù)免費(fèi)嗎_MySQL數(shù)據(jù)庫(kù) 免費(fèi)試用 MySQL數(shù)據(jù)庫(kù)入門 免費(fèi)云數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù)有哪些 云數(shù)據(jù)庫(kù)和普通數(shù)據(jù)庫(kù) 免費(fèi)數(shù)據(jù)庫(kù)服務(wù)器_免費(fèi)數(shù)據(jù)庫(kù)有哪些來自:專題華為云計(jì)算 云知識(shí) 多場(chǎng)景應(yīng)用與異構(gòu)數(shù)據(jù)入湖 多場(chǎng)景應(yīng)用與異構(gòu)數(shù)據(jù)入湖 時(shí)間:2021-01-13 09:52:19 多場(chǎng)景應(yīng)用與異構(gòu)數(shù)據(jù)入湖是ROMA Connect 應(yīng)用與數(shù)據(jù)連接解決方案中的應(yīng)用場(chǎng)景之一。 數(shù)據(jù)集成、交換、共享、開放 企業(yè)當(dāng)中云上云下應(yīng)用相互隔離,數(shù)據(jù)分散在各系統(tǒng),來自:百科大數(shù)據(jù)分析學(xué)習(xí)與微認(rèn)證 通過系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書。 大數(shù)據(jù)分析學(xué)習(xí)課程與認(rèn)證 課程結(jié)合實(shí)踐,借助配套的實(shí)驗(yàn)環(huán)境,一站式學(xué)練考,輕松Get新知識(shí) 隨著大數(shù)據(jù)、云計(jì)算的發(fā)展,來自:專題互聯(lián)網(wǎng)+大數(shù)據(jù)、AI和數(shù)據(jù)挖掘等技術(shù)的不斷發(fā)展,數(shù)據(jù)庫(kù)技術(shù)和產(chǎn)品更是日新月異。 數(shù)據(jù)庫(kù)技術(shù)是數(shù)據(jù)庫(kù)管理的有效技術(shù),研究如何對(duì)數(shù)據(jù)進(jìn)行科學(xué)管理,從而為人們提供和共享的、安全的可靠的數(shù)據(jù)。本文先為大家介紹數(shù)據(jù)庫(kù)的四個(gè)基本概念:數(shù)據(jù)、數(shù)據(jù)庫(kù)、數(shù)據(jù)庫(kù)管理系統(tǒng)和數(shù)據(jù)庫(kù)系統(tǒng)。 數(shù)據(jù) 早期的計(jì)來自:百科大數(shù)據(jù)分析學(xué)習(xí)與微認(rèn)證 通過系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書。 大數(shù)據(jù)分析學(xué)習(xí)課程與認(rèn)證 課程結(jié)合實(shí)踐,借助配套的實(shí)驗(yàn)環(huán)境,一站式學(xué)練考,輕松Get新知識(shí) 【初級(jí)】球星薪酬決定性因素分析來自:專題大數(shù)據(jù)應(yīng)用范圍有哪些 大數(shù)據(jù)應(yīng)用范圍有哪些 華為云大數(shù)據(jù)相關(guān)技術(shù)與產(chǎn)品服務(wù) 華為云大數(shù)據(jù)相關(guān)技術(shù)與產(chǎn)品服務(wù) 大數(shù)據(jù)計(jì)算 大數(shù)據(jù)搜索與分析 大數(shù)據(jù)治理與開發(fā) 數(shù)據(jù)可視化 大數(shù)據(jù)應(yīng)用 數(shù)據(jù)平臺(tái) MapReduce服務(wù) 支持多應(yīng)用場(chǎng)景集群 MapReduce服務(wù)(MapReduce Service)提供來自:專題業(yè)務(wù)規(guī)模增大,數(shù)據(jù)庫(kù)存儲(chǔ)的數(shù)據(jù)量和承載的業(yè)務(wù)壓力也不斷增加。數(shù)據(jù)庫(kù)的架構(gòu)也必須隨之變化。 如上的架構(gòu)分類方法,是一種按照主機(jī)數(shù)量來區(qū)分的分類方式,分別是單機(jī)架構(gòu)和多機(jī)架構(gòu)。單機(jī)架構(gòu)分為單主機(jī)和獨(dú)立主機(jī),多機(jī)架構(gòu)分為分組和分片。 為了避免應(yīng)用服務(wù)和數(shù)據(jù)庫(kù)服務(wù)對(duì)資源的競(jìng)爭(zhēng),單機(jī)架構(gòu)也來自:百科BoostKit大數(shù)據(jù)使能套件:Spark機(jī)器學(xué)習(xí)算法,實(shí)現(xiàn)數(shù)據(jù)處理倍級(jí)性能提升 BoostKit大數(shù)據(jù)使能套件:Spark機(jī)器學(xué)習(xí)算法,實(shí)現(xiàn)數(shù)據(jù)處理倍級(jí)性能提升 時(shí)間:2021-04-27 15:10:34 內(nèi)容簡(jiǎn)介: 隨著大數(shù)據(jù)爆炸式的增長(zhǎng),應(yīng)用大規(guī)模數(shù)據(jù)處理系統(tǒng)分析大數(shù)據(jù)變得越來越來自:百科
- 完全圖解單模光纖和多模光纖,誰(shuí)才是速度之王?
- 單模光纜與多模光纜,網(wǎng)絡(luò)工程師必知的光纜類型
- 深度學(xué)習(xí)煉丹-數(shù)據(jù)增強(qiáng)
- 當(dāng)大數(shù)據(jù)深度學(xué)習(xí)失效時(shí)
- 深度學(xué)習(xí)煉丹-數(shù)據(jù)標(biāo)準(zhǔn)化
- 當(dāng)大數(shù)據(jù)深度學(xué)習(xí)失效時(shí)
- 基于深度學(xué)習(xí)的日志數(shù)據(jù)異常檢測(cè)
- 《Python數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)實(shí)戰(zhàn)》—1.3.4 深度學(xué)習(xí)
- 走近深度學(xué)習(xí),認(rèn)識(shí)MoXing:數(shù)據(jù)輸入教程
- 基于深度學(xué)習(xí)的油藏?cái)?shù)據(jù)分類與識(shí)別