- 深度神經(jīng)學(xué)習(xí)助聽器會(huì)實(shí)現(xiàn)嗎 內(nèi)容精選 換一換
-
一句話識(shí)別 :可以實(shí)現(xiàn)1分鐘以內(nèi)音頻到文字的轉(zhuǎn)換。對(duì)于用戶上傳的二進(jìn)制音頻格式數(shù)據(jù),系統(tǒng)經(jīng)過(guò)處理,生成語(yǔ)音對(duì)應(yīng)的文字。 錄音文件識(shí)別:對(duì)于錄制的長(zhǎng)語(yǔ)音進(jìn)行識(shí)別,轉(zhuǎn)寫成文字,提供不同領(lǐng)域模型,具備良好的可擴(kuò)展性,支持熱詞定制。 ASRC優(yōu)勢(shì) 高識(shí)別率 基于深度學(xué)習(xí)技術(shù),對(duì)特定領(lǐng)域場(chǎng)景和語(yǔ)料進(jìn)行優(yōu)化,識(shí)別率達(dá)到業(yè)界領(lǐng)先。來(lái)自:百科本實(shí)驗(yàn)主要介紹基于AI1型 彈性云服務(wù)器 完成黑白圖像上色應(yīng)用開發(fā),通過(guò)該實(shí)驗(yàn)了解將神經(jīng)網(wǎng)絡(luò)模型部署到昇騰310處理器運(yùn)行的一般過(guò)程和方法。 基本要求: 1. 對(duì)業(yè)界主流的深度學(xué)習(xí)框架(Caffe、TensorFlow等)有一定了解。 2. 具備一定的C++、Shell、Python腳本開發(fā)能力。來(lái)自:百科
- 深度神經(jīng)學(xué)習(xí)助聽器會(huì)實(shí)現(xiàn)嗎 相關(guān)內(nèi)容
-
Engine)提供了昇騰AI處理器自定義算子開發(fā)能力,通過(guò)TBE提供的API和自定義算子編程開發(fā)界面可以完成相應(yīng)神經(jīng)網(wǎng)絡(luò)算子的開發(fā)。 TBE的重要概念之一為NPU,即Neural-network Processing Unit,神經(jīng)網(wǎng)絡(luò)處理器。 在維基百科中,NPU這個(gè)詞條被直接指向了“人工智能加速器”,釋義是這樣的:來(lái)自:百科,包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn); 3. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法原理創(chuàng)新; 4. 面向鯤鵬的算法親和優(yōu)化實(shí)踐; 5. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法實(shí)踐。 聽眾收益:來(lái)自:百科
- 深度神經(jīng)學(xué)習(xí)助聽器會(huì)實(shí)現(xiàn)嗎 更多內(nèi)容
-
理,則可以基于中間圖的結(jié)構(gòu)和權(quán)重,通過(guò)自動(dòng)量化工具來(lái)進(jìn)行量化。在算子中,可以對(duì)權(quán)重、偏置進(jìn)行量化,在離線模型生成過(guò)程中,量化后的權(quán)重、偏置會(huì)保存在離線模型中,推理計(jì)算時(shí)可以使用量化后的權(quán)重和偏置對(duì)輸入數(shù)據(jù)進(jìn)行計(jì)算,而校準(zhǔn)集用于在量化過(guò)程中訓(xùn)練量化參數(shù),保證量化精度。如果不需要量化,則直接進(jìn)行離線模型編譯生成離線模型。來(lái)自:百科加入網(wǎng)絡(luò)研討會(huì):參加網(wǎng)絡(luò)研討會(huì) 產(chǎn)品介紹:網(wǎng)絡(luò)研討會(huì)與會(huì)議的使用場(chǎng)景 查詢歷史的網(wǎng)絡(luò)研討會(huì)列表:響應(yīng)參數(shù) 華為云會(huì)議:華為云會(huì)議V7.16.5 審計(jì)與日志 云會(huì)議的功能特性:網(wǎng)絡(luò)研討會(huì) 如何申請(qǐng)網(wǎng)絡(luò)研討會(huì)測(cè)試資源? 查詢即將召開的網(wǎng)絡(luò)研討會(huì)列表:響應(yīng)參數(shù) 主持網(wǎng)絡(luò)研討會(huì):離開/結(jié)束網(wǎng)絡(luò)研討會(huì)來(lái)自:云商店時(shí)間:2020-10-30 15:12:04 圖像識(shí)別 ( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)?;?span style='color:#C7000B'>深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目標(biāo)檢測(cè)和屬性識(shí)別等能來(lái)自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科審核,幫助客戶降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn)。 隨著互聯(lián)網(wǎng)的飛速發(fā)展和信息量猛增,大量色情、暴力、政治敏感等不良信息夾雜其中,若不做好 內(nèi)容審核 ,不良內(nèi)容會(huì)讓用戶產(chǎn)生反感,從而降低產(chǎn)品使用頻率,最終遠(yuǎn)離產(chǎn)品。 內(nèi)容審核以開放API(Application Programming Interfac來(lái)自:百科虛擬私有云 VPC 對(duì)象存儲(chǔ)服務(wù) OBS 科學(xué)計(jì)算 科學(xué)計(jì)算 在科學(xué)計(jì)算領(lǐng)域,要求極強(qiáng)的雙精度計(jì)算能力。在模擬仿真過(guò)程中,消耗大量計(jì)算資源的同時(shí),會(huì)產(chǎn)生大量臨時(shí)數(shù)據(jù),對(duì)存儲(chǔ)帶寬與時(shí)延也有極高的要求 優(yōu)勢(shì) NVMe SSD 最高68萬(wàn)IOPS,消除存儲(chǔ)瓶頸,提升整體性能 雙精度計(jì)算 提供較CPU上百倍的雙精度計(jì)算能力來(lái)自:專題虛擬私有云 VPC 對(duì)象存儲(chǔ)服務(wù) OBS 科學(xué)計(jì)算 科學(xué)計(jì)算 在科學(xué)計(jì)算領(lǐng)域,要求極強(qiáng)的雙精度計(jì)算能力。在模擬仿真過(guò)程中,消耗大量計(jì)算資源的同時(shí),會(huì)產(chǎn)生大量臨時(shí)數(shù)據(jù),對(duì)存儲(chǔ)帶寬與時(shí)延也有極高的要求 優(yōu)勢(shì) NVMe SSD 最高68萬(wàn)IOPS,消除存儲(chǔ)瓶頸,提升整體性能 雙精度計(jì)算 提供較CPU上百倍的雙精度計(jì)算能力來(lái)自:專題按需計(jì)費(fèi):按需計(jì)費(fèi)是指按照API調(diào)用次數(shù)階梯價(jià)格計(jì)費(fèi),計(jì)費(fèi)價(jià)格參見 語(yǔ)音交互 價(jià)格計(jì)算器。 折扣套餐包:折扣套餐包方式是用戶可以購(gòu)買套餐包,扣費(fèi)時(shí)調(diào)用次數(shù)會(huì)先在套餐包內(nèi)進(jìn)行抵扣,抵扣完后的剩余調(diào)用量默認(rèn)轉(zhuǎn)回按需計(jì)費(fèi)方式,計(jì)費(fèi)價(jià)格參見語(yǔ)音交互價(jià)格計(jì)算器。。 說(shuō)明:購(gòu)買套餐包前,請(qǐng)進(jìn)行賬號(hào)實(shí)名認(rèn)證。來(lái)自:專題內(nèi)置加速框架 一鍵式部署,分鐘級(jí)實(shí)例發(fā)放,聚焦核心業(yè)務(wù) 科學(xué)計(jì)算 在科學(xué)計(jì)算領(lǐng)域,要求極強(qiáng)的雙精度計(jì)算能力。在模擬仿真過(guò)程中,消耗大量計(jì)算資源的同時(shí),會(huì)產(chǎn)生大量臨時(shí)數(shù)據(jù),對(duì)存儲(chǔ)帶寬與時(shí)延也有極高的要求 優(yōu)勢(shì) NVMe SSD 最高68萬(wàn)IOPS,消除存儲(chǔ)瓶頸,提升整體性能 雙精度計(jì)算 提供較CPU上百倍的雙精度計(jì)算能力來(lái)自:專題虛擬私有云 VPC 對(duì)象存儲(chǔ)服務(wù) OBS 科學(xué)計(jì)算 科學(xué)計(jì)算 在科學(xué)計(jì)算領(lǐng)域,要求極強(qiáng)的雙精度計(jì)算能力。在模擬仿真過(guò)程中,消耗大量計(jì)算資源的同時(shí),會(huì)產(chǎn)生大量臨時(shí)數(shù)據(jù),對(duì)存儲(chǔ)帶寬與時(shí)延也有極高的要求 優(yōu)勢(shì) NVMe SSD 最高68萬(wàn)IOPS,消除存儲(chǔ)瓶頸,提升整體性能 雙精度計(jì)算 提供較CPU上百倍的雙精度計(jì)算能力來(lái)自:專題測(cè)到作業(yè)人員打手機(jī)行為,加強(qiáng)安全管控。 打手機(jī)智能檢測(cè)算法是基于人工智能技術(shù)領(lǐng)域中的深度學(xué)習(xí)技術(shù),結(jié)合大數(shù)據(jù),使用大量的人員打手機(jī)圖片數(shù)據(jù)采用監(jiān)督學(xué)習(xí)的方式進(jìn)行智能檢測(cè)訓(xùn)練。算法采用深度卷積神經(jīng)網(wǎng)絡(luò)提取數(shù)據(jù)中關(guān)鍵特征,忽略圖片數(shù)據(jù)中的不相關(guān)信息,并結(jié)合業(yè)務(wù)邏輯進(jìn)行推理判斷。 將訓(xùn)來(lái)自:云商店支持訓(xùn)練模型的靈活導(dǎo)出,可加載到規(guī)則引擎,實(shí)現(xiàn)實(shí)時(shí)告警 生產(chǎn)物料預(yù)估 基于歷史物料數(shù)據(jù),對(duì)生產(chǎn)所需物料進(jìn)行準(zhǔn)確分析預(yù)估,降低倉(cāng)儲(chǔ)周期,提升效率 優(yōu)勢(shì) 深度算法優(yōu)化 基于業(yè)界時(shí)間序列算法模型,并結(jié)合華為供應(yīng)鏈深度優(yōu)化 一鍵式發(fā)布 機(jī)器學(xué)習(xí)、推理平臺(tái)預(yù)集成,算法模型可以一鍵式發(fā)布應(yīng)用,降低二次開發(fā)工作來(lái)自:百科
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:圖神經(jīng)網(wǎng)絡(luò)(GNN)
- 神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)
- 機(jī)器學(xué)習(xí)、深度學(xué)習(xí)與神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí) - 深度學(xué)習(xí) (人工神經(jīng)網(wǎng)絡(luò)的研究的概念)
- 深度學(xué)習(xí)入門之神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí)(七)——卷積神經(jīng)網(wǎng)絡(luò)
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:神經(jīng)架構(gòu)搜索與自動(dòng)機(jī)器學(xué)習(xí)
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.4.3 神經(jīng)網(wǎng)絡(luò)
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)筆記第5篇:神經(jīng)網(wǎng)絡(luò)與tf.keras,1.3 Tensorflow實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)【附代碼文檔】
- 深度神經(jīng)網(wǎng)絡(luò)--3.4 用MindSpore實(shí)現(xiàn)簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)