- 深度解析BigDL深度學(xué)習(xí)框架 內(nèi)容精選 換一換
-
來(lái)自:百科支持模型一鍵部署到云、邊、端。 高性能 自研MoXing深度學(xué)習(xí)框架,提升算法開(kāi)發(fā)效率和訓(xùn)練速度。 優(yōu)化深度模型推理中GPU的利用率,加速云端在線推理。 可生成在Ascend芯片上運(yùn)行的模型,實(shí)現(xiàn)高效端邊推理。 靈活 支持多種主流開(kāi)源框架(TensorFlow、Spark_MLlib、M來(lái)自:百科
- 深度解析BigDL深度學(xué)習(xí)框架 相關(guān)內(nèi)容
-
央國(guó)企數(shù)字化從業(yè)務(wù)上云邁向深度用云 央國(guó)企數(shù)字化從業(yè)務(wù)上云邁向深度用云 未來(lái)央國(guó)企所有的數(shù)字化轉(zhuǎn)型都將基于云來(lái)開(kāi)展,用云的深度將決定業(yè)務(wù)創(chuàng)新的速度。深度用云,充分發(fā)揮云的價(jià)值,實(shí)現(xiàn)跨越式發(fā)展。 未來(lái)央國(guó)企所有的數(shù)字化轉(zhuǎn)型都將基于云來(lái)開(kāi)展,用云的深度將決定業(yè)務(wù)創(chuàng)新的速度。深度用云,充分發(fā)揮云的價(jià)值,實(shí)現(xiàn)跨越式發(fā)展。來(lái)自:專題完善的生態(tài)環(huán)境,全面支持多種GPU應(yīng)用程序、深度學(xué)習(xí)框架。G系列支持OpenGL、DirectX;P系列支持CUDA、OpenCL。 簡(jiǎn)單易用 一鍵式獲取各類圖形工作站、超算應(yīng)用和深度學(xué)習(xí)框架、計(jì)算集群,讓您真正聚焦于核心業(yè)務(wù)。 高性價(jià)比 同步業(yè)界最新GPU技術(shù),無(wú)縫切換最新GPU硬件;支來(lái)自:百科
- 深度解析BigDL深度學(xué)習(xí)框架 更多內(nèi)容
-
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2 深度學(xué)習(xí)框架
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 深度學(xué)習(xí)框架(PyTorch)
- 深度學(xué)習(xí)框架指南
- PyTorch深度學(xué)習(xí)領(lǐng)域框架
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.3 本書(shū)涉及的深度學(xué)習(xí)框架
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.5 深度學(xué)習(xí)展望
- 初識(shí)深度學(xué)習(xí)推理框架 | 簡(jiǎn)記
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——2.3.4 詳細(xì)代碼解析(1)
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——2.3.4 詳細(xì)代碼解析(2)
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——2.3.4 詳細(xì)代碼解析(3)