- 基于深度學(xué)習(xí)技術(shù)的車牌識(shí)別 內(nèi)容精選 換一換
-
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科
- 基于深度學(xué)習(xí)技術(shù)的車牌識(shí)別 相關(guān)內(nèi)容
-
至超越了人類的水平。本課程將介紹深度學(xué)習(xí)算法的知識(shí)。 課程簡(jiǎn)介 本課程將會(huì)探討深度學(xué)習(xí)中的基礎(chǔ)理論、算法、使用方法、技巧與不同的深度學(xué)習(xí)模型。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握神經(jīng)網(wǎng)絡(luò)基礎(chǔ)理論。 2、掌握深度學(xué)習(xí)中數(shù)據(jù)處理的基本方法。 3、掌握深度學(xué)習(xí)訓(xùn)練中調(diào)參、模型選擇的基本方法。來(lái)自:百科征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科
- 基于深度學(xué)習(xí)技術(shù)的車牌識(shí)別 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科
在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書 區(qū)塊鏈 部署彈珠游戲模擬資產(chǎn)變化 初級(jí)微認(rèn)證 了解區(qū)塊鏈的基礎(chǔ)技術(shù),掌握區(qū)塊鏈服務(wù)部署應(yīng)用的流程,提高區(qū)塊鏈服務(wù)的使用能力 了解區(qū)塊鏈的基礎(chǔ)技術(shù),掌握區(qū)塊鏈服務(wù)部署應(yīng)用的流程,提高區(qū)塊鏈服務(wù)的使用能力 區(qū)塊鏈的應(yīng)用部署與運(yùn)維 區(qū)塊鏈的應(yīng)用已由開(kāi)來(lái)自:專題
AI開(kāi)發(fā)者(技能開(kāi)發(fā)者) AI開(kāi)發(fā)者一般是從事AI開(kāi)發(fā)的技術(shù)人員或高校學(xué)生等群體,這些用戶想開(kāi)發(fā)具備AI能力的技能,并且可以方便地部署到設(shè)備實(shí)時(shí)查看技能的運(yùn)行效果,從中獲取一定的收入或知識(shí)。這些用戶可以在 HiLens 管理控制臺(tái)進(jìn)行AI技能的開(kāi)發(fā)。HiLens在端側(cè)集成了HiLens Frame來(lái)自:百科
方法和深度學(xué)習(xí)方法完成計(jì)算機(jī)視覺(jué)任務(wù)的方法以及應(yīng)用場(chǎng)景。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握數(shù)字圖像的基礎(chǔ)知識(shí)和變換方法。 2、掌握?qǐng)D像分類技術(shù)的原理和應(yīng)用場(chǎng)景。 3、掌握目標(biāo)檢測(cè)技術(shù)的原理和應(yīng)用場(chǎng)景。 4、掌握?qǐng)D像分割技術(shù)的原理和應(yīng)用場(chǎng)景。 5、掌握視頻處理的技術(shù)原理和應(yīng)用場(chǎng)景。來(lái)自:百科
API、交流學(xué)習(xí)和實(shí)戰(zhàn)的平臺(tái)。 【賽事背景】 華為云已經(jīng)成為全球主要云服務(wù)供應(yīng)商,在華為云上開(kāi)放了2400+ API,包括計(jì)算、存儲(chǔ)、網(wǎng)絡(luò)、應(yīng)用服務(wù)、軟件開(kāi)發(fā)服務(wù)、視頻、數(shù)據(jù)庫(kù)、EI智能等74+產(chǎn)品,如何利用這些豐富強(qiáng)大的API快速開(kāi)發(fā)自己的應(yīng)用和服務(wù),成為大家關(guān)注的熱點(diǎn)。 本次AI 人臉識(shí)別 賽,為華為云來(lái)自:百科
在左側(cè)導(dǎo)航欄中選擇“服務(wù)監(jiān)控”,查看API的使用量。 文字識(shí)別 OCR 的并發(fā)是多少? 文字識(shí)別服務(wù)屬于公有云服務(wù),線上用戶資源共享,并發(fā)量會(huì)根據(jù)線上用戶的調(diào)用情況動(dòng)態(tài)調(diào)整。 如遇到突發(fā)高峰導(dǎo)致的并發(fā)量不夠用的情況,您可以嘗試以下兩種解決方法: • 通過(guò)重試機(jī)制,在代碼里檢查返回值,碰到并發(fā)錯(cuò)誤可以延時(shí)一小段時(shí)間(如2-5s)重試請(qǐng)求來(lái)自:專題
- 【車牌識(shí)別】基于matlab車牌識(shí)別【含Matlab源碼 417期】
- 【車牌識(shí)別】基于matlab RGB車牌識(shí)別【含Matlab源碼 1108期】
- 【車牌識(shí)別】基于matlab GUI模板匹配車牌識(shí)別【含Matlab源碼 958期】
- 【車牌識(shí)別】基于matlab GUI模板匹配車牌庫(kù)識(shí)別【含Matlab源碼 416期】
- 車牌識(shí)別
- 基于深度學(xué)習(xí)的油藏?cái)?shù)據(jù)分類與識(shí)別
- 【車牌識(shí)別】基于matlab GUI BP神經(jīng)網(wǎng)絡(luò)車牌識(shí)別【含Matlab源碼 669期】
- 【車牌識(shí)別】基于matlab GUI模板匹配車牌識(shí)別門禁系統(tǒng)【含Matlab源碼 1091期】
- 基于深度學(xué)習(xí)的性別識(shí)別算法matlab仿真
- 【車牌識(shí)別】基于matlab GUI閾值分割車牌識(shí)別(帶面板)【含Matlab源碼 721期】