- 基于深度學(xué)習(xí)的視覺場(chǎng)景識(shí)別 內(nèi)容精選 換一換
-
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科
- 基于深度學(xué)習(xí)的視覺場(chǎng)景識(shí)別 相關(guān)內(nèi)容
-
更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科
- 基于深度學(xué)習(xí)的視覺場(chǎng)景識(shí)別 更多內(nèi)容
-
謝老師,華為云EI技術(shù)專家,10年人工智能/計(jì)算機(jī)視覺研究經(jīng)驗(yàn),在國(guó)際頂級(jí)會(huì)議和期刊上發(fā)表超過(guò)50篇論文,谷歌引用數(shù)1700,擅長(zhǎng)大規(guī)模視覺識(shí)別、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo)來(lái)自:百科方法和深度學(xué)習(xí)方法完成計(jì)算機(jī)視覺任務(wù)的方法以及應(yīng)用場(chǎng)景。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握數(shù)字圖像的基礎(chǔ)知識(shí)和變換方法。 2、掌握?qǐng)D像分類技術(shù)的原理和應(yīng)用場(chǎng)景。 3、掌握目標(biāo)檢測(cè)技術(shù)的原理和應(yīng)用場(chǎng)景。 4、掌握?qǐng)D像分割技術(shù)的原理和應(yīng)用場(chǎng)景。 5、掌握視頻處理的技術(shù)原理和應(yīng)用場(chǎng)景。來(lái)自:百科云知識(shí) 工業(yè)視覺的優(yōu)勢(shì) 工業(yè)視覺的優(yōu)勢(shì) 時(shí)間:2020-08-20 09:23:53 傳統(tǒng)的工業(yè)制造主要采用人工肉眼檢測(cè)產(chǎn)品的缺陷,不僅使得檢測(cè)產(chǎn)品速度慢、效率低下,而且在檢測(cè)過(guò)程中容易出錯(cuò),導(dǎo)致誤檢、漏檢等問(wèn)題。基于機(jī)器視覺的質(zhì)檢方案,通過(guò)云端建模分析與邊緣實(shí)時(shí)決策的結(jié)合,實(shí)現(xiàn)自動(dòng)視覺檢測(cè),提升產(chǎn)品質(zhì)量。來(lái)自:百科云知識(shí) 圖像識(shí)別 圖像識(shí)別 時(shí)間:2020-10-30 15:12:04 圖像識(shí)別( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)。基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)來(lái)自:百科索和分類、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過(guò)二次翻拍、打印翻拍等手法二次處理的圖片。利用翻來(lái)自:百科圖像標(biāo)簽服務(wù) imagetagging能準(zhǔn)確識(shí)別自然圖片中數(shù)百種場(chǎng)景、上千種通用物體及其屬性。讓智能相冊(cè)管理、照片檢索和分類、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加直觀。使用時(shí)用戶發(fā)送待處理圖片,返回圖片標(biāo)簽內(nèi)容及相應(yīng)置信度。 圖像識(shí)別 Image 圖像識(shí)別(Image Recognition),基于深度學(xué)習(xí)技術(shù),來(lái)自:百科
- 探討場(chǎng)景文本識(shí)別中的語(yǔ)言模型:基于深度學(xué)習(xí)的解決思路
- 基于深度學(xué)習(xí)的場(chǎng)景文字檢索
- 智慧城市管理:基于視覺識(shí)別引擎和深度學(xué)習(xí)的安全保障數(shù)字化
- 基于深度學(xué)習(xí)的視覺定位方法初探:PoseNet簡(jiǎn)介
- 《深度學(xué)習(xí)與圖像識(shí)別:原理與實(shí)踐》—1.2 機(jī)器視覺的主要應(yīng)用場(chǎng)景
- 基于深度學(xué)習(xí)的油藏?cái)?shù)據(jù)分類與識(shí)別
- 基于深度學(xué)習(xí)的性別識(shí)別算法matlab仿真
- 基于深度學(xué)習(xí)的海洋魚類識(shí)別算法matlab仿真
- 基于深度學(xué)習(xí)的鳥類識(shí)別系統(tǒng)matlab仿真
- 【人工智能】python深度學(xué)習(xí) 視覺領(lǐng)域,實(shí)時(shí)人臉識(shí)別