- 基于深度學(xué)習(xí)的目標(biāo)跟蹤算法源碼 內(nèi)容精選 換一換
-
云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、語(yǔ)音識(shí)別、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科
- 基于深度學(xué)習(xí)的目標(biāo)跟蹤算法源碼 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來(lái)自:百科挑戰(zhàn)。 基于源碼的特征生成方法: 不同語(yǔ)言具有不同的特點(diǎn),在考慮基于源碼的特征生成方法時(shí)需要考慮到語(yǔ)言特點(diǎn)來(lái)采用針對(duì)性的方法來(lái)解決,這樣可以起到事半功倍的作用。下面針對(duì)不同語(yǔ)言分別來(lái)說明對(duì)應(yīng)的解決方法: ● C語(yǔ)言:沒有類的復(fù)雜性,在構(gòu)建時(shí)只要用到的源碼文件,該文件中的所有函數(shù)信息都會(huì)被一起編譯進(jìn)二進(jìn)制文件中。來(lái)自:百科
- 基于深度學(xué)習(xí)的目標(biāo)跟蹤算法源碼 更多內(nèi)容
-
華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開發(fā)者,致力于讓云無(wú)處不在,讓智能無(wú)所不及,共建智能世界云底座。 華為云官網(wǎng)立即注冊(cè)一元域名華為 云桌面來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科但是,密鑰越長(zhǎng),加密和解密所花費(fèi)的時(shí)間就越長(zhǎng)。 因此,有必要綜合考慮受保護(hù)信息的敏感性,攻擊者破解的成本以及系統(tǒng)所需的響應(yīng)時(shí)間,尤其是在商業(yè)信息領(lǐng)域。 RSA運(yùn)算速度:由于所有計(jì)算都是大數(shù),因此無(wú)論是通過軟件還是硬件來(lái)實(shí)現(xiàn),RSA最快的情況都比DES慢幾倍。 速度一直是RSA的缺陷。 通常只用于少量 數(shù)據(jù)加密 。來(lái)自:百科的圖片進(jìn)行學(xué)習(xí)。對(duì)于不成功的圖片,我們進(jìn)一步使用 OCR 。OCR能夠識(shí)別出圖像中的文字內(nèi)容及其位置。結(jié)合第一階段的目標(biāo)識(shí)別模型進(jìn)行結(jié)果融合,可以得到更為精確的可點(diǎn)擊區(qū)域結(jié)果,并且這個(gè)時(shí)候的融合方案已經(jīng)初步可以使用了。隨著數(shù)據(jù)集的積累,目標(biāo)檢測(cè)模型的檢測(cè)結(jié)果也變得更精確。最終能夠只使用目標(biāo)識(shí)別方案。來(lái)自:百科
- 【目標(biāo)跟蹤】基于matlab卡爾曼濾波算法視頻目標(biāo)跟蹤【含Matlab源碼 793期】
- 【目標(biāo)跟蹤】基于matlab Kalman目標(biāo)跟蹤【含Matlab源碼 1119期】
- 【目標(biāo)跟蹤】基于matlab Kalman濾波目標(biāo)跟蹤【含Matlab源碼 388期】
- 基于深度學(xué)習(xí)的性別識(shí)別算法matlab仿真
- 基于深度學(xué)習(xí)的海洋魚類識(shí)別算法matlab仿真
- 【目標(biāo)跟蹤】基于matlab卡爾曼濾波多目標(biāo)跟蹤【含Matlab源碼 1832期】
- 【運(yùn)動(dòng)學(xué)】基于matlab Singer模型算法機(jī)動(dòng)目標(biāo)跟蹤【含Matlab源碼 1157期】
- 【優(yōu)化算法】多目標(biāo)跟蹤優(yōu)化算法(MTOA)【含Matlab源碼 1466期】
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的手勢(shì)識(shí)別算法matlab仿真
- 基于深度學(xué)習(xí)的路面裂縫檢測(cè)算法matlab仿真