- 基于深度學(xué)習(xí)的極限學(xué)習(xí)機(jī) 內(nèi)容精選 換一換
-
來自:百科征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、語音識(shí)別、自然語言處理等其他領(lǐng)域。來自:百科
- 基于深度學(xué)習(xí)的極限學(xué)習(xí)機(jī) 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來的智能世界,數(shù)字化來自:百科
- 基于深度學(xué)習(xí)的極限學(xué)習(xí)機(jī) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科華為云計(jì)算 云知識(shí) 基于鯤鵬的華為云混合云平臺(tái) 基于鯤鵬的華為云混合云平臺(tái) 時(shí)間:2021-05-28 10:21:45 鯤鵬 云計(jì)算 H CS 6.5.1/8.0是基于鯤鵬的華為云混合云平臺(tái)。 它支持x86和鯤鵬混合部署; 支持容器多集群模式部署; 容器管理面支持容災(zāi)高可用,數(shù)據(jù)面支持應(yīng)用多AZ部署;來自:百科
- Python實(shí)現(xiàn)極限學(xué)習(xí)機(jī)ELM【hpelm庫】
- 回歸預(yù)測(cè) | MATLAB基于DBN-ELM深度置信網(wǎng)絡(luò)融合極限學(xué)習(xí)機(jī)多輸入單輸出回歸預(yù)測(cè)
- Python實(shí)現(xiàn)極限學(xué)習(xí)機(jī)ELM【hpelm庫】(內(nèi)涵源代碼)
- 全網(wǎng)最全極限學(xué)習(xí)機(jī)(ELM)及其變種的開源代碼分享
- 【ELM分類】基于matlab鯨魚算法優(yōu)化核極限學(xué)習(xí)機(jī)數(shù)據(jù)分類【含Matlab源碼 2012期】
- 【ORELM回歸預(yù)測(cè)】基于matlab離群魯棒極限學(xué)習(xí)機(jī)ORELM回歸預(yù)測(cè)【含Matlab源碼 1441期】
- 【回歸預(yù)測(cè)】基于matlab鯨魚算法WOA優(yōu)化混合核極限學(xué)習(xí)機(jī)KELM回歸預(yù)測(cè)【含Matlab源碼 JQ004期】
- 【回歸預(yù)測(cè)】基于matlab粒子群算法優(yōu)化混合核極限學(xué)習(xí)機(jī)KELM回歸預(yù)測(cè)【含Matlab源碼 JQ002期】
- 基于深度學(xué)習(xí)的AI
- 基于深度學(xué)習(xí)的解決思路