- 客流數(shù)據(jù)分析 內(nèi)容精選 換一換
-
Insight BI數(shù)據(jù)分析 自助可視化分析 商品提供自助式可視化分析能力,用戶可以根據(jù)自己的需求自定義數(shù)據(jù)分析模式,直觀地查看和理解數(shù)據(jù),提升數(shù)據(jù)分析的效率和準(zhǔn)確性。 商品提供自助式可視化分析能力,用戶可以根據(jù)自己的需求自定義數(shù)據(jù)分析模式,直觀地查看和理解數(shù)據(jù),提升數(shù)據(jù)分析的效率和準(zhǔn)確性。來(lái)自:專題各行各業(yè)優(yōu)秀企業(yè)是如何應(yīng)用UDESK Insight BI數(shù)據(jù)分析(H CS 版)的?一起來(lái)看看具體的場(chǎng)景。 提升客服行業(yè)的數(shù)據(jù)分析效率 提供實(shí)時(shí)的數(shù)據(jù)分析報(bào)告 助力企業(yè)高效決策的數(shù)據(jù)大屏 提升客服行業(yè)的數(shù)據(jù)分析效率 這款UDESK Insight BI數(shù)據(jù)分析(HCS版)產(chǎn)品具備強(qiáng)大的數(shù)據(jù)整合、清洗來(lái)自:專題
- 客流數(shù)據(jù)分析 相關(guān)內(nèi)容
-
BI應(yīng)用 浩天智能數(shù)據(jù)分析BI平臺(tái) 產(chǎn)品介紹 浩天智能數(shù)據(jù)分析BI平臺(tái):提升中小企業(yè)數(shù)據(jù)分析效率的利器 在如今信息爆炸的時(shí)代,中小企業(yè)面臨著海量數(shù)據(jù)的挑戰(zhàn)。如何高效地分析和利用這些數(shù)據(jù)成為了企業(yè)發(fā)展的關(guān)鍵。為了解決這一問(wèn)題,我們推出了一款名為浩天智能數(shù)據(jù)分析BI平臺(tái)的Saas產(chǎn)品,幫助中小企業(yè)輕松應(yīng)對(duì)數(shù)據(jù)分析難題。來(lái)自:專題Insight BI數(shù)據(jù)分析 產(chǎn)品介紹 什么是BI工具?UDESK Insight BI數(shù)據(jù)分析為中小企業(yè)提供了一款強(qiáng)大的商業(yè)智能數(shù)據(jù)分析工具。與其他BI產(chǎn)品相比,UDESK Insight具備了更多的亮點(diǎn)和功能,能夠幫助企業(yè)實(shí)現(xiàn)敏捷的績(jī)效考核分析、自助式可視化分析能力、可交互的數(shù)據(jù)分析報(bào)告和實(shí)時(shí)的酷炫數(shù)據(jù)大屏。來(lái)自:專題
- 客流數(shù)據(jù)分析 更多內(nèi)容
-
Lean-BI是基于新一代自助式可視化數(shù)據(jù)分析平臺(tái),提供了多數(shù)據(jù)源管理,拖拽式設(shè)計(jì),大屏看板,多終端自適應(yīng)等功能,輔助企業(yè)完成數(shù)據(jù)分析和戰(zhàn)略決策 Lean-BI是基于新一代自助式可視化數(shù)據(jù)分析平臺(tái),提供了多數(shù)據(jù)源管理,拖拽式設(shè)計(jì),大屏看板,多終端自適應(yīng)等功能,輔助企業(yè)完成數(shù)據(jù)分析和戰(zhàn)略決策 LEAN-BI大數(shù)據(jù)分析系統(tǒng)來(lái)自:專題增強(qiáng)分析型敏捷BI平臺(tái) 自助化數(shù)據(jù)分析 商品具有數(shù)據(jù)分析自助化的特點(diǎn),能夠自動(dòng)識(shí)別數(shù)據(jù)的潛在關(guān)系。這使得用戶無(wú)需專業(yè)的數(shù)據(jù)分析技能,就能輕松進(jìn)行數(shù)據(jù)分析,提高了數(shù)據(jù)利用的便利性。 商品具有數(shù)據(jù)分析自助化的特點(diǎn),能夠自動(dòng)識(shí)別數(shù)據(jù)的潛在關(guān)系。這使得用戶無(wú)需專業(yè)的數(shù)據(jù)分析技能,就能輕松進(jìn)行數(shù)據(jù)分析,提高了數(shù)據(jù)利用的便利性。來(lái)自:專題據(jù)權(quán)限控制到表/列,幫助企業(yè)實(shí)現(xiàn)部門間數(shù)據(jù)共享和權(quán)限管理。 建議搭配以下服務(wù)使用 OBS 、DIS、DAYU 圖3運(yùn)營(yíng)商大數(shù)據(jù)分析 地理大數(shù)據(jù)分析 地理大數(shù)據(jù)分析 地理大數(shù)據(jù)具有大數(shù)據(jù)的相關(guān)特征,數(shù)據(jù)體量巨大,例如,全球衛(wèi)星遙感影像數(shù)據(jù)量達(dá)到PB級(jí)。數(shù)據(jù)種類多,有結(jié)構(gòu)化的遙感影像柵來(lái)自:百科物聯(lián)網(wǎng)資產(chǎn)模型感知,提升物聯(lián)網(wǎng)數(shù)據(jù)分析能力 華為云物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)是以物聯(lián)網(wǎng)資產(chǎn)模型為中心,與資產(chǎn)模型深度整合,在數(shù)據(jù)分析作業(yè)的定義中,開(kāi)發(fā)者可以方便引用物聯(lián)網(wǎng)的模型數(shù)據(jù),提升物聯(lián)網(wǎng)數(shù)據(jù)分析能力。 開(kāi)放架構(gòu),擁抱生態(tài) 物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)整合了大數(shù)據(jù)分析領(lǐng)域的最佳實(shí)踐,為開(kāi)發(fā)者打造來(lái)自:百科市場(chǎng)數(shù)據(jù)等,提供全面的數(shù)據(jù)分析,幫助企業(yè)從多角度、全方位了解企業(yè)的運(yùn)營(yíng)情況。4. 易用性:深拓BI系統(tǒng)的操作界面友好,易于使用,用戶無(wú)需具備專業(yè)的數(shù)據(jù)分析技能,就可以輕松使用該系統(tǒng)進(jìn)行數(shù)據(jù)分析。5. 實(shí)時(shí)性:深拓BI系統(tǒng)可以實(shí)時(shí)更新數(shù)據(jù),提供最新的數(shù)據(jù)分析結(jié)果,幫助企業(yè)及時(shí)了解企業(yè)的運(yùn)營(yíng)情況,做出快速的決策。6來(lái)自:專題業(yè)務(wù)數(shù)據(jù)流實(shí)時(shí)整合,及時(shí)對(duì)經(jīng)營(yíng)決策進(jìn)行優(yōu)化與調(diào)整。 圖3增強(qiáng)型ETL+實(shí)時(shí)BI分析 實(shí)時(shí)數(shù)據(jù)分析 移動(dòng)互聯(lián)網(wǎng)、IoT場(chǎng)景下會(huì)產(chǎn)生大量實(shí)時(shí)數(shù)據(jù),為了快速獲取數(shù)據(jù)價(jià)值,需要對(duì)數(shù)據(jù)進(jìn)行實(shí)時(shí)分析,DWS的快速入庫(kù)和查詢能力可支持實(shí)時(shí)數(shù)據(jù)分析。 圖4實(shí)時(shí)數(shù)據(jù)分析 優(yōu)勢(shì) 流式數(shù)據(jù)實(shí)時(shí)入庫(kù) IoT、互聯(lián)網(wǎng)等數(shù)據(jù)經(jīng)過(guò)流計(jì)算及AI服務(wù)處理后,可實(shí)時(shí)寫入DWS。來(lái)自:百科一站式BI解決方案 企業(yè)積累的海量數(shù)據(jù)及各種數(shù)據(jù)資產(chǎn),體量龐大,需高性能大數(shù)據(jù)平臺(tái)支撐進(jìn)行全量數(shù)據(jù)分析和挖掘。依托DWS+BI工具打造全局的、直觀的、關(guān)聯(lián)性的、可視化的運(yùn)營(yíng)數(shù)字化分析平臺(tái) ,以數(shù)據(jù)分析來(lái)驅(qū)動(dòng)業(yè)務(wù)價(jià)值提升及管理提升。 優(yōu)勢(shì) 多源數(shù)據(jù)接入:多源數(shù)據(jù)采集,打破數(shù)據(jù)孤島,形成統(tǒng)一的數(shù)據(jù)展現(xiàn)平臺(tái)。來(lái)自:專題DFS中進(jìn)行批量分析,在1小時(shí)內(nèi) MRS 可以完成10T的天氣數(shù)據(jù)分析。 圖1環(huán)保行業(yè)海量數(shù)據(jù)分析場(chǎng)景 該場(chǎng)景下MRS的優(yōu)勢(shì)如下所示。 低成本:利用OBS實(shí)現(xiàn)低成本存儲(chǔ)。 海量數(shù)據(jù)分析:利用Hive實(shí)現(xiàn)TB/PB級(jí)的數(shù)據(jù)分析。 可視化的導(dǎo)入導(dǎo)出工具:通過(guò)可視化導(dǎo)入導(dǎo)出工具Loader,將數(shù)據(jù)導(dǎo)出到DWS,完成BI分析。來(lái)自:百科作為一個(gè)指標(biāo)來(lái)參考。 直播大數(shù)據(jù)分析 為了回避單個(gè)采樣時(shí)間點(diǎn)測(cè)速導(dǎo)致的偏差,可以采取對(duì)歷史大數(shù)據(jù)進(jìn)行分析,預(yù)測(cè)哪個(gè)網(wǎng)絡(luò)路徑最優(yōu)。對(duì)歷史大數(shù)據(jù)進(jìn)行的分析分為兩個(gè)維度:用戶個(gè)人連接數(shù)據(jù)分析和用戶群體連接數(shù)據(jù)分析。 1. 用戶個(gè)人連接數(shù)據(jù)分析 每個(gè)主播用戶的使用歷史數(shù)據(jù)來(lái)自:百科19:49:41 物聯(lián)網(wǎng) 大數(shù)據(jù)分析 云計(jì)算 一站式物聯(lián)網(wǎng)數(shù)據(jù)捷高效開(kāi)發(fā)體現(xiàn)在哪些方面?主要體現(xiàn)在: 環(huán)境準(zhǔn)備更快——與華為云IoT設(shè)備管理預(yù)集成,無(wú)需任何配置,即可打通IoT數(shù)據(jù)源;邊云協(xié)同的框架能力,只須聚焦分析業(yè)務(wù)邏輯開(kāi)發(fā),不感知邊緣資源管理;一鍵開(kāi)通數(shù)據(jù)分析相關(guān)能力,按需使用,無(wú)來(lái)自:百科包含了非常多的領(lǐng)域,如:用于數(shù)據(jù)分析和計(jì)算的numpy、pandas; 數(shù)據(jù)可視化 工具matplotlib等。 課程簡(jiǎn)介 本課程將會(huì)講解Python在數(shù)據(jù)分析、AI和圖像處理等領(lǐng)域常用的工具包。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握強(qiáng)數(shù)據(jù)分析工具pandas、numpy的使用。來(lái)自:百科
- 客流分析之基于人形檢測(cè)的劃區(qū)域客流統(tǒng)計(jì)
- 客流分析之基于頭肩部檢測(cè)的過(guò)線客流統(tǒng)計(jì)
- 客流分析之未佩戴口罩識(shí)別
- 智慧零售:利用行人檢測(cè)技術(shù)分析客流量
- 華為和Aislelabs合作為客戶提供熱力圖和客流分析
- 華為智簡(jiǎn)園區(qū)聯(lián)合奕通助力深業(yè)上城,打造未來(lái)商業(yè)~
- 華為智簡(jiǎn)園區(qū)聯(lián)合奕通助力深業(yè)上城,打造未來(lái)商業(yè)
- 華為智簡(jiǎn)園區(qū)(CloudCampus)助力Fastweb,打造城市WIFI統(tǒng)一云化管理
- 記:3月5日華為云開(kāi)放日:走進(jìn)華為,作為MVP代表現(xiàn)將受訪稿整理以作紀(jì)念(1)
- 【大話云原生】負(fù)載均衡篇-小飯館客流量變大了