- 字典訓(xùn)練算法 內(nèi)容精選 換一換
-
時(shí)間:2020-12-11 11:15:04 本課程基于華為云ModelArts一站式 AI開(kāi)發(fā)平臺(tái) ,主要內(nèi)容包括基礎(chǔ)知識(shí)、經(jīng)典數(shù)據(jù)集和經(jīng)典算法的介紹,每章課程都是實(shí)戰(zhàn)案例,模型訓(xùn)練、測(cè)試、評(píng)估全流程覆蓋,配合代碼講解和課后作業(yè),幫助您掌握八大熱門(mén)AI領(lǐng)域的模型開(kāi)發(fā)能力。 課程簡(jiǎn)介 本課程主要內(nèi)容包括來(lái)自:百科為了增強(qiáng)算法的處理問(wèn)題的能力,對(duì)算法進(jìn)行優(yōu)化是必不可少的。算法優(yōu)化一般是對(duì)算法結(jié)構(gòu)和收斂進(jìn)行優(yōu)化。 本算法雖然包括眾多應(yīng)答器的場(chǎng)景,在實(shí)際使用中,也有可能會(huì)存在誤報(bào)場(chǎng)景,針對(duì)誤報(bào)場(chǎng)景,算法可以提供定制優(yōu)化服務(wù),針對(duì)特定場(chǎng)景進(jìn)行算法的定制,保證檢測(cè)的準(zhǔn)確率。 商品直達(dá):<<應(yīng)答器異位檢測(cè)>> 交通物流解決方案來(lái)自:云商店
- 字典訓(xùn)練算法 相關(guān)內(nèi)容
-
【鯤鵬開(kāi)發(fā)者比賽議程】 議程 時(shí)間安排 大賽報(bào)名時(shí)間 訓(xùn)練營(yíng)一期:11月11日-11月20日中午12:00一期報(bào)名截止 訓(xùn)練營(yíng)二期:11月11日-11月27日晚12:00二期報(bào)名截止(報(bào)名入口見(jiàn)頁(yè)面導(dǎo)航) 賽題發(fā)布 11月22日發(fā)布賽題 訓(xùn)練營(yíng)授課(線上) 訓(xùn)練營(yíng)一期:11月22日-11月29日(來(lái)自:百科的專(zhuān)用數(shù)據(jù)格式圍繞高性能查詢(xún)進(jìn)行設(shè)計(jì),其中包括多種索引技術(shù)、全局字典編碼和多次的Push down優(yōu)化,從而對(duì)TB級(jí)數(shù)據(jù)查詢(xún)進(jìn)行最快響應(yīng)。 高效率數(shù)據(jù)壓縮:CarbonData使用輕量級(jí)壓縮和重量級(jí)壓縮的組合壓縮算法壓縮數(shù)據(jù),可以減少60%~80%數(shù)據(jù)存儲(chǔ)空間,大大節(jié)省硬件存儲(chǔ)成本。來(lái)自:百科
- 字典訓(xùn)練算法 更多內(nèi)容
-
對(duì)于AI開(kāi)發(fā)者而言,在開(kāi)始模型訓(xùn)練前,都得提前準(zhǔn)備大量的數(shù)據(jù),完成數(shù)據(jù)標(biāo)注后,才能用于AI模型構(gòu)建。 一般情況下,模型構(gòu)建對(duì)輸入的訓(xùn)練數(shù)據(jù)都是有要求的,比如圖像分類(lèi),一類(lèi)標(biāo)簽的數(shù)據(jù)至少20條,否則您訓(xùn)練所得的模型無(wú)法滿足預(yù)期。為了獲得更好的模型,標(biāo)注的數(shù)據(jù)越多,訓(xùn)練所得的模型質(zhì)量更佳。來(lái)自:百科參數(shù)分析 算法預(yù)集成 專(zhuān)業(yè)預(yù)測(cè)性算法支持,預(yù)集成工業(yè)領(lǐng)域典型算法,如決策樹(shù),分類(lèi),聚類(lèi),回歸,異常檢測(cè)等算法。支持訓(xùn)練模型的靈活導(dǎo)出,可加載到規(guī)則引擎,實(shí)現(xiàn)實(shí)時(shí)告警 生產(chǎn)物料預(yù)估 基于歷史物料數(shù)據(jù),對(duì)生產(chǎn)所需物料進(jìn)行準(zhǔn)確分析預(yù)估,降低倉(cāng)儲(chǔ)周期,提升效率 優(yōu)勢(shì) 深度算法優(yōu)化 基于業(yè)來(lái)自:百科第四屆鯤鵬杯山東新動(dòng)能軟件創(chuàng)新創(chuàng)業(yè)大賽分賽鯤鵬訓(xùn)練營(yíng)開(kāi)發(fā)者大賽 第四屆鯤鵬杯山東新動(dòng)能軟件創(chuàng)新創(chuàng)業(yè)大賽分賽鯤鵬訓(xùn)練營(yíng)開(kāi)發(fā)者大賽 時(shí)間:2020-12-08 17:11:01 華為云“云上先鋒”· AI挑戰(zhàn)賽圍繞生活中的街景圖像展開(kāi),選手可以通過(guò)深度學(xué)習(xí)算法進(jìn)行圖像語(yǔ)義分割,對(duì)圖像進(jìn)行像素級(jí)別的分類(lèi)。來(lái)自:百科自動(dòng)檢測(cè)壓板投退狀態(tài)并實(shí)時(shí)反饋,為安監(jiān)人員進(jìn)行現(xiàn)場(chǎng)監(jiān)督提供技術(shù)保障。 商品介紹 基于大規(guī)模壓板圖片數(shù)據(jù)檢測(cè)訓(xùn)練,將算法加載到攝像機(jī)內(nèi)部,利用攝像機(jī)AI芯片強(qiáng)大的分析推理能力,實(shí)現(xiàn)視頻畫(huà)面實(shí)時(shí)分析,通過(guò)深度學(xué)習(xí)算法實(shí)時(shí)檢測(cè)各種壓板的狀態(tài)。 服務(wù)商簡(jiǎn)介 深圳市鐵越電氣有限公司成立于2000年初,注冊(cè)資金來(lái)自:云商店呼吸器顏色智能檢測(cè)是用智能攝像機(jī)的前端AI技術(shù)對(duì)變壓器工作現(xiàn)場(chǎng)的視頻進(jìn)行實(shí)時(shí)分析,基于大規(guī)模呼吸器圖片數(shù)據(jù)檢測(cè)訓(xùn)練,將算法加載到攝像機(jī)內(nèi)部,利用攝像機(jī)AI芯片強(qiáng)大的分析推理能力,實(shí)現(xiàn)視頻畫(huà)面實(shí)時(shí)分析,通過(guò)深度學(xué)習(xí)算法準(zhǔn)確判定呼吸器顏色是否變色,監(jiān)理人員能夠第一時(shí)間獲取相關(guān)圖像,并及時(shí)更換硅膠,為變壓器安全運(yùn)行提供安全保障。來(lái)自:云商店選擇用其完成開(kāi)發(fā)調(diào)試,最后通過(guò) HiLens平臺(tái) 部署到設(shè)備上運(yùn)行和管理。 開(kāi)發(fā)流程 數(shù)據(jù)預(yù)處理和模型訓(xùn)練 用戶在華為云ModelArts平臺(tái)或線下,進(jìn)行數(shù)據(jù)預(yù)處理、算法開(kāi)發(fā)和模型訓(xùn)練,得到模型后,根據(jù)需要部署的設(shè)備芯片類(lèi)型,完成對(duì)應(yīng)的模型轉(zhuǎn)換。 AI應(yīng)用開(kāi)發(fā) 開(kāi)發(fā)者可以選擇基于Mo來(lái)自:專(zhuān)題車(chē)起火導(dǎo)致的火災(zāi)風(fēng)險(xiǎn),本算法通過(guò)實(shí)時(shí)監(jiān)測(cè)電梯內(nèi)的攝像頭畫(huà)面,方便樓宇管理人員及時(shí)發(fā)現(xiàn)電瓶車(chē),提高管理效率。 核心功能: 單點(diǎn)抓拍、攝像頭獨(dú)立抓拍、電瓶車(chē)檢測(cè)、抓拍檢測(cè)電梯內(nèi)的電瓶車(chē); 產(chǎn)品特點(diǎn): 本算法使用了深度神經(jīng)網(wǎng)絡(luò)技術(shù),通過(guò)使用大量實(shí)際場(chǎng)景圖片訓(xùn)練得到的模型,實(shí)現(xiàn)對(duì)電瓶車(chē)的來(lái)自:云商店華為云提供一站式人工智能開(kāi)發(fā)平臺(tái),通過(guò)對(duì)歷史氣象數(shù)據(jù)的高效訓(xùn)練不斷優(yōu)化推理模型,助力短時(shí)間臨近預(yù)報(bào)更加精準(zhǔn) 優(yōu)勢(shì) 算法豐富:提供圖像分類(lèi)、物體檢測(cè)等幾十種CNN/RNN神經(jīng)網(wǎng)絡(luò)算法模型;提供大量基于開(kāi)源數(shù)據(jù)集訓(xùn)練好的模型,加速模型訓(xùn)練 使用便捷:無(wú)縫對(duì)接華為云的 OBS 存儲(chǔ)和GPU高性能計(jì)算,滿足各類(lèi)業(yè)務(wù)場(chǎng)景需求來(lái)自:百科華為云計(jì)算 云知識(shí) 網(wǎng)絡(luò)人工智能高校訓(xùn)練營(yíng)-中山大學(xué)&網(wǎng)絡(luò)人工智能聯(lián)合出品 網(wǎng)絡(luò)人工智能高校訓(xùn)練營(yíng)-中山大學(xué)&網(wǎng)絡(luò)人工智能聯(lián)合出品 時(shí)間:2021-04-27 15:59:32 內(nèi)容簡(jiǎn)介: 將介紹人工智能基本知識(shí)體系,機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)基礎(chǔ)與實(shí)踐。時(shí)空預(yù)測(cè)問(wèn)題的AutoML求解—來(lái)自:百科標(biāo)注、數(shù)據(jù)處理、模型開(kāi)發(fā)/訓(xùn)練、模型評(píng)估、應(yīng)用開(kāi)發(fā)、應(yīng)用評(píng)估等步驟。 ModelArts Workflow(也稱(chēng)工作流)本質(zhì)是開(kāi)發(fā)者基于實(shí)際業(yè)務(wù)場(chǎng)景開(kāi)發(fā)用于部署模型或應(yīng)用的流水線工具。在機(jī)器學(xué)習(xí)的場(chǎng)景中,流水線可能會(huì)覆蓋數(shù)據(jù)標(biāo)注、數(shù)據(jù)處理、模型開(kāi)發(fā)/訓(xùn)練、模型評(píng)估、應(yīng)用開(kāi)發(fā)、應(yīng)用評(píng)估等步驟。來(lái)自:專(zhuān)題產(chǎn)品特點(diǎn) 端云協(xié)同推理,平衡低計(jì)算時(shí)延和高精度 端側(cè)分析數(shù)據(jù),降低上云存儲(chǔ)成本 一站式技能開(kāi)發(fā),縮短開(kāi)發(fā)周期 技能市場(chǎng)預(yù)置豐富技能,在線訓(xùn)練,一鍵部署 產(chǎn)品架構(gòu) Huawei HiLens 是一個(gè)端云協(xié)同的多模態(tài)AI開(kāi)發(fā)應(yīng)用平臺(tái),云側(cè)提供開(kāi)發(fā)框架HiLens Framework、開(kāi)發(fā)環(huán)境HiLens來(lái)自:百科核進(jìn)展。 當(dāng)狀態(tài)變更為“系統(tǒng)審核完成”,自動(dòng)啟動(dòng)算法訓(xùn)練。如果系統(tǒng)存在多個(gè)算法訓(xùn)練任務(wù),可能會(huì)存在排隊(duì)和延遲的現(xiàn)象,請(qǐng)耐心等待。 1分鐘教程讓您快速上手體驗(yàn) 1分鐘教程讓您快速上手體驗(yàn) 基于 MetaStudio 控制臺(tái)提交數(shù)字人訓(xùn)練 數(shù)字人應(yīng)用制作 您只需上傳正面照片,在5秒內(nèi)就能來(lái)自:專(zhuān)題決策的結(jié)合,實(shí)現(xiàn)自動(dòng)視覺(jué)檢測(cè),提升產(chǎn)品質(zhì)量。 優(yōu)勢(shì): ●高效:云端已訓(xùn)練的視覺(jué)模型,在邊緣側(cè)部署,實(shí)現(xiàn)產(chǎn)品實(shí)時(shí)預(yù)測(cè),提升檢測(cè)效率,提高產(chǎn)品質(zhì)量 ●模型優(yōu):提供邊云協(xié)同架構(gòu),云端模型訓(xùn)練,數(shù)據(jù)邊緣處理,模型增量訓(xùn)練優(yōu)化,實(shí)現(xiàn)模型性能優(yōu)異 ●統(tǒng)一管控:智能邊緣平臺(tái)可以實(shí)現(xiàn)統(tǒng)一模型下發(fā),節(jié)點(diǎn)狀態(tài)統(tǒng)一監(jiān)控來(lái)自:專(zhuān)題
- 秒懂算法 | 字典樹(shù)
- 【java_藍(lán)橋杯算法訓(xùn)練】算法訓(xùn)練 阿爾法乘積
- 【java_藍(lán)橋杯算法訓(xùn)練】算法訓(xùn)練 新生舞會(huì)
- 【java_藍(lán)橋杯算法訓(xùn)練】算法訓(xùn)練 斜率計(jì)算
- 【java_藍(lán)橋杯算法訓(xùn)練 】試題 算法訓(xùn)練 階乘
- 【java_藍(lán)橋杯算法訓(xùn)練】算法訓(xùn)練 輸出米字形
- 算法訓(xùn)練 矩陣乘法
- 算法訓(xùn)練 K好數(shù)
- 算法訓(xùn)練 字串統(tǒng)計(jì)
- 算法訓(xùn)練 關(guān)聯(lián)矩陣