- 神經(jīng)網(wǎng)絡(luò)二分類(lèi) 內(nèi)容精選 換一換
-
圖像的裁剪與縮放。 上圖展示了一種典型改變圖像尺寸的裁剪和補(bǔ)零操作,VPC在原圖像中取出的待處理圖像部分,再將這部分進(jìn)行補(bǔ)零操作,在卷積神經(jīng)網(wǎng)絡(luò)計(jì)算過(guò)程中保留邊緣的特征信息。補(bǔ)零操作需要用到上、下、左、右四個(gè)填充尺寸,在補(bǔ)零區(qū)域中進(jìn)行圖像邊緣擴(kuò)充,最后得到可以直接計(jì)算的補(bǔ)零后圖像。來(lái)自:百科通過(guò)本課程的學(xué)習(xí),使學(xué)員了解: 1、如何構(gòu)建高效的神經(jīng)網(wǎng)絡(luò)基礎(chǔ)模型。 2、如何學(xué)習(xí)顯著性物體、邊緣等通用屬性。 3、如何利用通用屬性構(gòu)建弱監(jiān)督學(xué)習(xí)模型,并進(jìn)而利用互聯(lián)網(wǎng)數(shù)據(jù)自主完成知識(shí)學(xué)習(xí)。 課程大綱 第1章 什么是開(kāi)放環(huán)境的自適應(yīng)感知 第2章 面向識(shí)別與理解的神經(jīng)網(wǎng)絡(luò)共性技術(shù) 第3章 通用視覺(jué)基元屬性感知來(lái)自:百科
- 神經(jīng)網(wǎng)絡(luò)二分類(lèi) 相關(guān)內(nèi)容
-
視頻監(jiān)控 視頻檢測(cè) 人工智能 機(jī)器視覺(jué) 商品介紹 電瓶車(chē)起火事件時(shí)有發(fā)生,為保證樓宇公共安全,禁止電瓶車(chē)進(jìn)入,該產(chǎn)品采用AI智能算法,利用卷積神經(jīng)網(wǎng)絡(luò)技術(shù),通過(guò)深度學(xué)習(xí)實(shí)現(xiàn)電瓶車(chē)檢測(cè)功能。 電梯內(nèi)電瓶車(chē)檢測(cè)商品介紹: 應(yīng)用場(chǎng)景: 隨著電瓶車(chē)越來(lái)越受歡迎,電瓶車(chē)起火事件也時(shí)有發(fā)生。特別當(dāng)來(lái)自:云商店
- 神經(jīng)網(wǎng)絡(luò)二分類(lèi) 更多內(nèi)容
-
部署在AI1型服務(wù)器上執(zhí)行的方法。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 本實(shí)驗(yàn)主要介紹基于AI1型 彈性云服務(wù)器 完成黑白圖像上色應(yīng)用開(kāi)發(fā),通過(guò)該實(shí)驗(yàn)了解將神經(jīng)網(wǎng)絡(luò)模型部署到昇騰310處理器運(yùn)行的一般過(guò)程和方法。 基本要求: 1. 對(duì)業(yè)界主流的深度學(xué)習(xí)框架(Caffe、TensorFlow等)有一定了解。來(lái)自:百科目前 內(nèi)容審核 包括 內(nèi)容審核-圖像 、 內(nèi)容審核-文本 、 內(nèi)容審核-視頻 。提供了清晰度檢測(cè)、扭曲校正、文本內(nèi)容檢測(cè)、圖像內(nèi)容檢測(cè)和 視頻審核 服務(wù)。 內(nèi)容審核-圖像 圖像內(nèi)容審核,利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中的涉政敏感人物、暴恐元素、涉黃內(nèi)容等,幫助業(yè)務(wù)規(guī)避違規(guī)風(fēng)險(xiǎn)。 內(nèi)容審核-文本 文本內(nèi)容審核 ,采用人來(lái)自:百科適用場(chǎng)景: 視頻處理:圖片自動(dòng)分類(lèi)識(shí)別、圖片搜索、視頻轉(zhuǎn)碼、實(shí)時(shí)渲染、互聯(lián)網(wǎng)直播和AR/VR等視頻應(yīng)用,需要大量的實(shí)時(shí)計(jì)算能力,普通的云服務(wù)器難以滿足性能需求,F(xiàn)PGA云服務(wù)器可以提供高性價(jià)比的視頻解決方案,是視頻類(lèi)場(chǎng)景的理想選擇。 機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中來(lái)自:百科語(yǔ)音合成 。 定制 語(yǔ)音識(shí)別 定制語(yǔ)音識(shí)別提供了 一句話識(shí)別 ,錄音文件識(shí)別功能。 一句話識(shí)別:可以實(shí)現(xiàn)1分鐘以內(nèi)音頻到文字的轉(zhuǎn)換。對(duì)于用戶上傳的二進(jìn)制音頻格式數(shù)據(jù),系統(tǒng)經(jīng)過(guò)處理,生成語(yǔ)音對(duì)應(yīng)的文字。 錄音文件識(shí)別:對(duì)于錄制的長(zhǎng)語(yǔ)音進(jìn)行識(shí)別,轉(zhuǎn)寫(xiě)成文字,提供不同領(lǐng)域模型,具備良好的可擴(kuò)展性,支持熱詞定制。來(lái)自:百科適用場(chǎng)景: 視頻處理:圖片自動(dòng)分類(lèi)識(shí)別、圖片搜索、視頻轉(zhuǎn)碼、實(shí)時(shí)渲染、互聯(lián)網(wǎng)直播和AR/VR等視頻應(yīng)用,需要大量的實(shí)時(shí)計(jì)算能力,普通的云服務(wù)器難以滿足性能需求,F(xiàn)PGA云服務(wù)器可以提供高性價(jià)比的視頻解決方案,是視頻類(lèi)場(chǎng)景的理想選擇。 機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中來(lái)自:百科云知識(shí) 任務(wù)調(diào)度器調(diào)度流程介紹 任務(wù)調(diào)度器調(diào)度流程介紹 時(shí)間:2020-08-19 09:58:46 昇騰AI軟件棧任務(wù)調(diào)度器調(diào)度流程在神經(jīng)網(wǎng)絡(luò)的離線模型執(zhí)行過(guò)程中,任務(wù)調(diào)度器接收來(lái)自離線模型執(zhí)行器的具體執(zhí)行任務(wù),這些任務(wù)之間存在依賴關(guān)系,需要先解除依賴關(guān)系,再進(jìn)行任務(wù)調(diào)度等步驟,最后根據(jù)具體的任務(wù)類(lèi)型分發(fā)給AI來(lái)自:百科實(shí)驗(yàn)指導(dǎo)用戶完成基于華為昇騰彈性云服務(wù)器的目標(biāo)檢測(cè)應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 ① 了解華為昇騰全棧開(kāi)發(fā)工具M(jìn)indStudio; ② 了解如何利用華為昇騰處理器加速神經(jīng)網(wǎng)絡(luò)推理應(yīng)用; 實(shí)驗(yàn)摘要 1.準(zhǔn)備環(huán)境 2.配置工程 3.編寫(xiě)代碼 4.運(yùn)行并驗(yàn)證 溫馨提示:詳情信息請(qǐng)以實(shí)驗(yàn)頁(yè)面:https://lab.huaweicloud來(lái)自:百科
- sklearn-搭建神經(jīng)網(wǎng)絡(luò)分類(lèi)模型
- 深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)垃圾分類(lèi)系統(tǒng) - 深度學(xué)習(xí) 神經(jīng)網(wǎng)絡(luò) 圖像識(shí)別 垃圾分類(lèi)
- 【Python算法】分類(lèi)與預(yù)測(cè)——人工神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí)修煉(六)——神經(jīng)網(wǎng)絡(luò)分類(lèi)問(wèn)題
- 聲音分類(lèi)—深度神經(jīng)網(wǎng)絡(luò)實(shí)踐
- 循環(huán)神經(jīng)網(wǎng)絡(luò)實(shí)踐—文本分類(lèi)
- 神經(jīng)網(wǎng)絡(luò)實(shí)戰(zhàn)--使用遷移學(xué)習(xí)完成貓狗分類(lèi)
- Knn算法實(shí)現(xiàn)分類(lèi)(二)
- 基于小波神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)分類(lèi)算法matlab仿真
- 基于PaddlePaddle的LeNet神經(jīng)網(wǎng)絡(luò)MNIST數(shù)據(jù)集分類(lèi)