- 卷積神經(jīng)網(wǎng)絡(luò)調(diào)整過(guò)擬合 內(nèi)容精選 換一換
-
型。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握神經(jīng)網(wǎng)絡(luò)基礎(chǔ)理論。 2、掌握深度學(xué)習(xí)中數(shù)據(jù)處理的基本方法。 3、掌握深度學(xué)習(xí)訓(xùn)練中調(diào)參、模型選擇的基本方法。 4、掌握主流深度學(xué)習(xí)模型的技術(shù)特點(diǎn)。 課程大綱 第1章 神經(jīng)網(wǎng)絡(luò)基礎(chǔ)概念 第2章 數(shù)據(jù)集處理 第3章 網(wǎng)絡(luò)構(gòu)建 第4章來(lái)自:百科華為云計(jì)算 云知識(shí) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 時(shí)間:2020-12-07 16:53:14 HCIP-AI EI Developer V2.0系列課程。神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)的重要基礎(chǔ),理解神經(jīng)網(wǎng)絡(luò)的基本原理、優(yōu)化目標(biāo)與實(shí)現(xiàn)方法是學(xué)習(xí)后面內(nèi)容的關(guān)鍵,這也是本課程的重點(diǎn)所在。 目標(biāo)學(xué)員來(lái)自:百科
- 卷積神經(jīng)網(wǎng)絡(luò)調(diào)整過(guò)擬合 相關(guān)內(nèi)容
-
LeCun等人構(gòu)建的卷積神經(jīng)網(wǎng)絡(luò)LeNet-5在手寫(xiě)數(shù)字識(shí)別問(wèn)題中取得成功 ,被譽(yù)為卷積神經(jīng)網(wǎng)絡(luò)的“Hello Word”。LeNet-5以及在此之后產(chǎn)生的變體定義了現(xiàn)代卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu),可謂入門(mén)級(jí)神經(jīng)網(wǎng)絡(luò)模型。本次實(shí)踐使用的模型正是LeNet-5。 LeNet-5由輸入層、卷積層、池化來(lái)自:百科框架管理器離線模型生成介紹 時(shí)間:2020-08-19 17:00:58 離線模型生成以卷積神經(jīng)網(wǎng)絡(luò)為例,在深度學(xué)習(xí)框架下構(gòu)造好相應(yīng)的網(wǎng)絡(luò)模型,并且訓(xùn)練好原始數(shù)據(jù),再通過(guò)離線模型生成器進(jìn)行算子調(diào)度優(yōu)化、權(quán)重?cái)?shù)據(jù)重排和壓縮、內(nèi)存優(yōu)化等,最終生成調(diào)優(yōu)好的離線模型。離線模型生成器主要用來(lái)生成可以高效執(zhí)行在昇騰AI處理器上的離線模型。來(lái)自:百科
- 卷積神經(jīng)網(wǎng)絡(luò)調(diào)整過(guò)擬合 更多內(nèi)容
-
中級(jí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 使用MindSpore進(jìn)行可視化調(diào)試調(diào)優(yōu) 基于昇騰AI處理器的算子開(kāi)發(fā) 基于昇騰AI處理器的目標(biāo)檢測(cè)應(yīng)用(ACL) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 使用MindSpore進(jìn)行可視化調(diào)試調(diào)優(yōu) 基于昇騰AI處理器的算子開(kāi)發(fā) 基于昇騰AI處理器的目標(biāo)檢測(cè)應(yīng)用(ACL)來(lái)自:專(zhuān)題標(biāo)簽 視頻 OCR 識(shí)別視頻中出現(xiàn)的文字內(nèi)容,包括字幕、彈幕、以及部分自然場(chǎng)景文字和藝術(shù)字等 產(chǎn)品優(yōu)勢(shì) 識(shí)別準(zhǔn)確 采用標(biāo)簽排序?qū)W習(xí)算法與卷積神經(jīng)網(wǎng)絡(luò)算法,識(shí)別精度高,支持實(shí)時(shí)識(shí)別與檢測(cè) 簡(jiǎn)單易用 提供符合RESTful的API訪問(wèn)接口,使用方便,用戶的業(yè)務(wù)系統(tǒng)可快速集成 層次標(biāo)簽來(lái)自:百科云知識(shí) 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 時(shí)間:2020-12-14 10:07:11 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索是當(dāng)前深度學(xué)習(xí)最熱門(mén)的話題之一,已經(jīng)成為了一大研究潮流。本課程將介紹神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索的理論基礎(chǔ)、應(yīng)用和發(fā)展現(xiàn)狀。 課程簡(jiǎn)介 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索(NAS)來(lái)自:百科視頻監(jiān)控 視頻檢測(cè) 人工智能 機(jī)器視覺(jué) 商品介紹 電瓶車(chē)起火事件時(shí)有發(fā)生,為保證樓宇公共安全,禁止電瓶車(chē)進(jìn)入,該產(chǎn)品采用AI智能算法,利用卷積神經(jīng)網(wǎng)絡(luò)技術(shù),通過(guò)深度學(xué)習(xí)實(shí)現(xiàn)電瓶車(chē)檢測(cè)功能。 電梯內(nèi)電瓶車(chē)檢測(cè)商品介紹: 應(yīng)用場(chǎng)景: 隨著電瓶車(chē)越來(lái)越受歡迎,電瓶車(chē)起火事件也時(shí)有發(fā)生。特別來(lái)自:云商店DL)是機(jī)器學(xué)習(xí)的一種,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的必由之路。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個(gè)隱藏層的多層感知器就是深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過(guò)組合低層特征形成更抽象的高層代表屬性類(lèi)別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。來(lái)自:百科流程編排器負(fù)責(zé)完成神經(jīng)網(wǎng)絡(luò)在昇騰AI處理器上的落地與實(shí)現(xiàn),統(tǒng)籌了整個(gè)神經(jīng)網(wǎng)絡(luò)生效的過(guò)程。 數(shù)字視覺(jué)預(yù)處理模塊在輸入之前進(jìn)行一次數(shù)據(jù)處理和修飾,來(lái)滿足計(jì)算的格式需求。 張量加速引擎作為神經(jīng)網(wǎng)絡(luò)算子兵工廠,為神經(jīng)網(wǎng)絡(luò)模型源源不斷提供功能強(qiáng)大的計(jì)算算子。 框架管理器將原始神經(jīng)網(wǎng)絡(luò)模型轉(zhuǎn)換成昇來(lái)自:百科本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò) 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必來(lái)自:百科打手機(jī)智能檢測(cè)算法是基于人工智能技術(shù)領(lǐng)域中的深度學(xué)習(xí)技術(shù),結(jié)合大數(shù)據(jù),使用大量的人員打手機(jī)圖片數(shù)據(jù)采用監(jiān)督學(xué)習(xí)的方式進(jìn)行智能檢測(cè)訓(xùn)練。算法采用深度卷積神經(jīng)網(wǎng)絡(luò)提取數(shù)據(jù)中關(guān)鍵特征,忽略圖片數(shù)據(jù)中的不相關(guān)信息,并結(jié)合業(yè)務(wù)邏輯進(jìn)行推理判斷。 將訓(xùn)練完成后的算法加載到AI攝像機(jī)內(nèi)部,利用攝像機(jī)內(nèi)部A來(lái)自:云商店華為云計(jì)算 云知識(shí) 實(shí)戰(zhàn)篇:神經(jīng)網(wǎng)絡(luò)賦予機(jī)器識(shí)圖的能力 實(shí)戰(zhàn)篇:神經(jīng)網(wǎng)絡(luò)賦予機(jī)器識(shí)圖的能力 時(shí)間:2020-12-09 09:28:38 深度神經(jīng)網(wǎng)絡(luò)讓機(jī)器擁有了視覺(jué)的能力,實(shí)戰(zhàn)派帶你探索深度學(xué)習(xí)! 課程簡(jiǎn)介 本課程主要內(nèi)容包括:深度學(xué)習(xí)平臺(tái)介紹、神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類(lèi)模型、經(jīng)典入門(mén)示例詳解:構(gòu)建手寫(xiě)數(shù)字識(shí)別模型。來(lái)自:百科神將教你從0到1通關(guān) 圖像識(shí)別 ??!幫你實(shí)現(xiàn)當(dāng)下熱門(mén)的垃圾分類(lèi)、自動(dòng)駕駛技術(shù)。 【賽事簡(jiǎn)介】 本次比賽為AI主題賽中的挑戰(zhàn)賽。選手可以使用卷積神經(jīng)網(wǎng)絡(luò)對(duì)生活中的街道場(chǎng)景進(jìn)行識(shí)別。選手可重復(fù)提交代碼,直到代碼完美為止。 【參賽對(duì)象】 對(duì)AI感興趣且年滿18歲的開(kāi)發(fā)者均可報(bào)名參加。 【報(bào)名須知】來(lái)自:百科
- 卷積神經(jīng)網(wǎng)絡(luò)
- 卷積神經(jīng)網(wǎng)絡(luò)
- 神經(jīng)網(wǎng)絡(luò)--從0開(kāi)始搭建過(guò)擬合和防過(guò)擬合模型
- 《探秘卷積神經(jīng)網(wǎng)絡(luò)的核心—卷積核》
- 卷積神經(jīng)網(wǎng)絡(luò)中卷積是什么為什么要使用卷積核運(yùn)算
- Excel實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)
- 神經(jīng)網(wǎng)絡(luò)常用卷積總結(jié)
- 卷積神經(jīng)網(wǎng)絡(luò)的定義
- 卷積神經(jīng)網(wǎng)絡(luò)詳細(xì)指南
- 卷積神經(jīng)網(wǎng)絡(luò)入門(mén)基礎(chǔ)