- 數(shù)據(jù)自動(dòng)分析標(biāo)注 內(nèi)容精選 換一換
-
目前只有“圖像分類(lèi)”和“物體檢測(cè)”類(lèi)型的數(shù)據(jù)集支持智能標(biāo)注功能。 啟動(dòng)智能標(biāo)注時(shí),需數(shù)據(jù)集存在至少2種標(biāo)簽,且每種標(biāo)簽已標(biāo)注的圖片不少于5張。 啟動(dòng)智能標(biāo)注時(shí),必須存在未標(biāo)注圖片。 啟動(dòng)智能標(biāo)注前,保證當(dāng)前系統(tǒng)中不存在正在進(jìn)行中的智能標(biāo)注任務(wù)。 后續(xù)操作 智能標(biāo)注結(jié)束后,所有標(biāo)注好的數(shù)據(jù)都存儲(chǔ)在待確認(rèn)頁(yè)來(lái)自:百科華為云計(jì)算 云知識(shí) 深圳開(kāi)放數(shù)據(jù)應(yīng)用創(chuàng)新大賽數(shù)據(jù)分析賽交通流量預(yù)測(cè) 深圳開(kāi)放數(shù)據(jù)應(yīng)用創(chuàng)新大賽數(shù)據(jù)分析賽交通流量預(yù)測(cè) 時(shí)間:2020-12-11 11:09:51 “華為云杯”2019 深圳開(kāi)放數(shù)據(jù)應(yīng)用創(chuàng)新大賽是由深圳市政務(wù)服務(wù)數(shù)據(jù)管理局聯(lián)合深圳市坪山區(qū)人民政府與深圳市前海管理局共同主辦來(lái)自:百科
- 數(shù)據(jù)自動(dòng)分析標(biāo)注 相關(guān)內(nèi)容
-
云知識(shí) 使用華為數(shù)據(jù)湖服務(wù)實(shí)現(xiàn)企業(yè)安全數(shù)據(jù)智能分析與挖掘 使用華為數(shù)據(jù)湖服務(wù)實(shí)現(xiàn)企業(yè)安全數(shù)據(jù)智能分析與挖掘 時(shí)間:2020-11-24 14:45:13 本視頻主要為您介紹使用華為數(shù)據(jù)湖服務(wù)實(shí)現(xiàn)企業(yè)安全數(shù)據(jù)智能分析與挖掘的操作教程指導(dǎo)。 步驟: 建立數(shù)據(jù)連接-數(shù)據(jù)接入-數(shù)據(jù)開(kāi)發(fā)-作業(yè)監(jiān)控來(lái)自:百科華為云計(jì)算 云知識(shí) 什么是IoT數(shù)據(jù)分析?它的優(yōu)勢(shì)是什么? 什么是IoT數(shù)據(jù)分析?它的優(yōu)勢(shì)是什么? 時(shí)間:2022-09-22 18:31:20 一、什么是物聯(lián)網(wǎng)數(shù)據(jù)? 物聯(lián)網(wǎng)數(shù)據(jù)顧名思義是由各種物聯(lián)網(wǎng)設(shè)備、傳感器產(chǎn)生的數(shù)據(jù)。與其他的數(shù)據(jù)相比,物聯(lián)網(wǎng)數(shù)據(jù)具有“大、小、高、底”四個(gè)特點(diǎn):來(lái)自:百科
- 數(shù)據(jù)自動(dòng)分析標(biāo)注 更多內(nèi)容
-
探索Serverless數(shù)據(jù)湖:無(wú)需大數(shù)據(jù)背景,會(huì)SQL就會(huì)大數(shù)據(jù)分析 探索Serverless數(shù)據(jù)湖:無(wú)需大數(shù)據(jù)背景,會(huì)SQL就會(huì)大數(shù)據(jù)分析 時(shí)間:2021-04-27 15:04:16 內(nèi)容簡(jiǎn)介: 隨著大數(shù)據(jù)&AI技術(shù)在企業(yè)商用場(chǎng)景的廣泛應(yīng)用,統(tǒng)一數(shù)據(jù)平臺(tái)已經(jīng)成為企業(yè)數(shù)據(jù)創(chuàng)新的基礎(chǔ)設(shè)施來(lái)自:百科場(chǎng)景提供數(shù)據(jù)采集、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)處理和應(yīng)用接口對(duì)接等底層工作的支撐,支持工業(yè)領(lǐng)域大規(guī)模數(shù)據(jù)處理的物聯(lián)網(wǎng)解決方案。 智物聯(lián)Mixlinker工業(yè)IOT平臺(tái)解決方案是為工業(yè)垂直領(lǐng)域和不同場(chǎng)景提供數(shù)據(jù)采集、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)處理和應(yīng)用接口對(duì)接等底層工作的支撐,支持工業(yè)領(lǐng)域大規(guī)模數(shù)據(jù)處理的物聯(lián)網(wǎng)解決方案。來(lái)自:專(zhuān)題全量備份表示對(duì)當(dāng)前狀態(tài)下的數(shù)據(jù)庫(kù)實(shí)例中的所有數(shù)據(jù)進(jìn)行一次完整的備份,用戶(hù)可在任意時(shí)刻使用全量備份恢復(fù)創(chuàng)建備份時(shí)的完整數(shù)據(jù)。 增量備份 TaurusDB數(shù)據(jù)庫(kù)系統(tǒng)自動(dòng)每5分鐘對(duì)上一次自動(dòng)備份或增量備份后更新的數(shù)據(jù)進(jìn)行備份。 自動(dòng)備份 TaurusDB會(huì)在數(shù)據(jù)庫(kù)實(shí)例的備份時(shí)段中創(chuàng)建數(shù)據(jù)庫(kù)實(shí)例的自動(dòng)備份。來(lái)自:專(zhuān)題捕。時(shí)序數(shù)據(jù)的分析一般依賴(lài)于時(shí)序數(shù)據(jù)庫(kù),數(shù)據(jù)保存至?xí)r序數(shù)據(jù)庫(kù)進(jìn)行分類(lèi)與排序,再由其他應(yīng)用或服務(wù)從數(shù)據(jù)庫(kù)中獲取進(jìn)行進(jìn)一步處理。 離線(xiàn)數(shù)據(jù) 還有一些數(shù)據(jù),對(duì)于實(shí)時(shí)性和有序性的要求都沒(méi)那么強(qiáng),分析時(shí)數(shù)據(jù)已經(jīng)固化,我們稱(chēng)之為離線(xiàn)數(shù)據(jù)。典型的離線(xiàn)數(shù)據(jù)包括產(chǎn)品銷(xiāo)量數(shù)據(jù)、景點(diǎn)游客數(shù)據(jù)等,應(yīng)用于來(lái)自:百科GaussDB (DWS)應(yīng)用場(chǎng)景-實(shí)時(shí)數(shù)據(jù)分析 GaussDB(DWS)應(yīng)用場(chǎng)景-實(shí)時(shí)數(shù)據(jù)分析 時(shí)間:2021-06-17 14:58:31 數(shù)據(jù)庫(kù) GaussDB(DWS)在實(shí)時(shí)數(shù)據(jù)分析的應(yīng)用如下圖所示。分析過(guò)程有如下的特點(diǎn): 流式數(shù)據(jù)實(shí)時(shí)入庫(kù):IoT、互聯(lián)網(wǎng)等數(shù)據(jù)經(jīng)過(guò)流計(jì)算及AI服務(wù)處理后,可實(shí)時(shí)寫(xiě)入GaussDB(DWS)。來(lái)自:百科但備機(jī)數(shù)據(jù)庫(kù)會(huì)被同步刪除且無(wú)法還原。因此,數(shù)據(jù)被刪除后只能依賴(lài)于實(shí)例的備份保障數(shù)據(jù)安全。 備份方案 任務(wù)類(lèi)型 備份類(lèi)型 使用場(chǎng)景 數(shù)據(jù)備份 自動(dòng)備份 RDS會(huì)在數(shù)據(jù)庫(kù)實(shí)例的備份時(shí)段中創(chuàng)建數(shù)據(jù)庫(kù)實(shí)例的自動(dòng)備份,自動(dòng)備份為全量備份。系統(tǒng)根據(jù)您指定的備份保留期保存數(shù)據(jù)庫(kù)實(shí)例的自動(dòng)備份。來(lái)自:專(zhuān)題華為云計(jì)算 云知識(shí) 華為云物聯(lián)網(wǎng)數(shù)據(jù)分析架構(gòu)一覽 華為云物聯(lián)網(wǎng)數(shù)據(jù)分析架構(gòu)一覽 時(shí)間:2021-03-12 15:05:56 物聯(lián)網(wǎng) 大數(shù)據(jù)分析 云計(jì)算 華為云物聯(lián)網(wǎng)數(shù)據(jù)分析從物聯(lián)網(wǎng)應(yīng)用場(chǎng)景出發(fā),提供行業(yè)大數(shù)據(jù)分析最佳實(shí)踐,降低企業(yè)物聯(lián)網(wǎng)數(shù)據(jù)開(kāi)發(fā)門(mén)檻。 文中課程 ????????來(lái)自:百科BI,即商業(yè)智能,指利用大數(shù)據(jù)分析、現(xiàn)代數(shù)據(jù)倉(cāng)庫(kù)等技術(shù)收集企業(yè)最新數(shù)據(jù)、形成BI報(bào)表并及時(shí)為企業(yè)員工提供BI數(shù)據(jù)分析報(bào)告,實(shí)現(xiàn)對(duì)業(yè)務(wù)數(shù)據(jù)的深入挖掘以獲取更多商業(yè)價(jià)值。大多數(shù)企業(yè)每天都會(huì)收集海量業(yè)務(wù)數(shù)據(jù),這些數(shù)據(jù)來(lái)自其 ERP 軟件(了解什么是ERP)、電商平臺(tái)、供應(yīng)鏈以及許多其他內(nèi)部和外部數(shù)據(jù)源。要來(lái)自:專(zhuān)題合查詢(xún)。 按數(shù)據(jù)時(shí)效性分層處理,獲得綜合處理效率最大化 高效的數(shù)據(jù)清洗,為數(shù)據(jù)分析輸入高質(zhì)量的數(shù)據(jù) 相比將設(shè)備數(shù)據(jù)轉(zhuǎn)發(fā)至通用數(shù)據(jù)分析服務(wù)進(jìn)行分析的方案,IoT數(shù)據(jù)分析服務(wù)是專(zhuān)為物聯(lián)網(wǎng)場(chǎng)景設(shè)計(jì)的。 IoT數(shù)據(jù)分析服務(wù)支持設(shè)備接入管理服務(wù)和多種第三方服務(wù)作為數(shù)據(jù)源,將數(shù)據(jù)集成、歸檔、來(lái)自:百科自助化數(shù)據(jù)分析 商品具有數(shù)據(jù)分析自助化的特點(diǎn),能夠自動(dòng)識(shí)別潛在關(guān)系,使得數(shù)據(jù)分析更加精準(zhǔn)和高效。同時(shí),對(duì)于大規(guī)模數(shù)據(jù),也能輕松處理,滿(mǎn)足萬(wàn)億級(jí)計(jì)算的需求。 商品具有數(shù)據(jù)分析自助化的特點(diǎn),能夠自動(dòng)識(shí)別潛在關(guān)系,使得數(shù)據(jù)分析更加精準(zhǔn)和高效。同時(shí),對(duì)于大規(guī)模數(shù)據(jù),也能輕松處理,滿(mǎn)足萬(wàn)億級(jí)計(jì)算的需求。來(lái)自:專(zhuān)題華為云計(jì)算 云知識(shí) 深圳開(kāi)放數(shù)據(jù)應(yīng)用創(chuàng)新大賽數(shù)據(jù)分析賽貨柜車(chē)到港預(yù)測(cè)2019 深圳開(kāi)放數(shù)據(jù)應(yīng)用創(chuàng)新大賽數(shù)據(jù)分析賽貨柜車(chē)到港預(yù)測(cè)2019 時(shí)間:2020-12-11 11:15:31 “華為云杯”2019 深圳開(kāi)放數(shù)據(jù)應(yīng)用創(chuàng)新大賽是由深圳市政務(wù)服務(wù)數(shù)據(jù)管理局聯(lián)合深圳市坪山區(qū)人民政府與深圳市前海管理局共同主辦來(lái)自:百科圖引擎服務(wù)為您提供向?qū)?、?jiǎn)單易用的可視化圖分析界面,所見(jiàn)即所得:支持Gremlin查詢(xún)語(yǔ)言、Cypher查詢(xún)語(yǔ)言,兼容您的使用習(xí)慣。 查詢(xún)分析一體化 查詢(xún)分析一體化,圖引擎服務(wù)為您提供豐富的圖分析算法,為關(guān)系分析、精準(zhǔn)營(yíng)銷(xiāo)等業(yè)務(wù)提供多樣的分析能力。 查詢(xún)分析一體化,圖引擎服務(wù)為您提供豐富的圖分析算法,為關(guān)系分析、精準(zhǔn)營(yíng)銷(xiāo)等業(yè)務(wù)提供多樣的分析能力。來(lái)自:專(zhuān)題成本 充分數(shù)據(jù)挖掘:盡可能的使用各種分析手段,從海量的物聯(lián)網(wǎng)數(shù)據(jù)中挖掘有價(jià)值的信息 提升處理效率:面對(duì)IoT設(shè)備持續(xù)不斷的數(shù)據(jù)注入,如何在數(shù)據(jù)處理的各個(gè)環(huán)節(jié)(接入,清洗,入庫(kù),分析,呈現(xiàn))實(shí)現(xiàn)最佳處理性能 管理數(shù)據(jù)質(zhì)量:建立一套可靠的數(shù)據(jù)質(zhì)量評(píng)估體系,并對(duì)質(zhì)量差的數(shù)據(jù)進(jìn)行合適的處理(糾偏,忽略等)來(lái)自:百科、高安全的能力。 數(shù)據(jù)采集 數(shù)據(jù)采集層提供了數(shù)據(jù)接入到 MRS 集群的能力,包括Flume(數(shù)據(jù)采集)、Loader(關(guān)系型數(shù)據(jù)導(dǎo)入)、Kafka(高可靠消息隊(duì)列),支持各種數(shù)據(jù)源導(dǎo)入數(shù)據(jù)到大數(shù)據(jù)集群中。使用云數(shù)據(jù)遷移云服務(wù)也可以將外部數(shù)據(jù)導(dǎo)入至MRS集群中。 數(shù)據(jù)存儲(chǔ) MRS支持結(jié)來(lái)自:專(zhuān)題華為云計(jì)算 云知識(shí) 物聯(lián)網(wǎng)數(shù)據(jù)分析提供高性能的物聯(lián)網(wǎng)離線(xiàn)處理能力 物聯(lián)網(wǎng)數(shù)據(jù)分析提供高性能的物聯(lián)網(wǎng)離線(xiàn)處理能力 時(shí)間:2021-03-12 19:45:45 物聯(lián)網(wǎng) 大數(shù)據(jù)分析 云計(jì)算 物聯(lián)網(wǎng)數(shù)據(jù)分析提供低成本/高性能的物聯(lián)網(wǎng)離線(xiàn)處理能力,關(guān)鍵競(jìng)爭(zhēng)力包含: 1. 與華為云IoT相關(guān)服務(wù)深度預(yù)集成,降低開(kāi)發(fā)門(mén)檻;來(lái)自:百科
- ModelArts智能標(biāo)注提升70%數(shù)據(jù)標(biāo)注效率
- 數(shù)據(jù)標(biāo)注工具
- 實(shí)戰(zhàn)案例丨ModelArts在數(shù)據(jù)標(biāo)注、數(shù)據(jù)過(guò)濾上的應(yīng)用技巧:自動(dòng)分組
- 少量標(biāo)注數(shù)據(jù)如何訓(xùn)練
- ModelArts智能標(biāo)注提升70%數(shù)據(jù)標(biāo)注效率學(xué)習(xí)分享
- 機(jī)器學(xué)習(xí)中的有標(biāo)注數(shù)據(jù)集和無(wú)標(biāo)注數(shù)據(jù)集
- 什么是數(shù)據(jù)集標(biāo)注?
- 數(shù)據(jù)處理,標(biāo)注,分析“ModelArts人工智能應(yīng)用開(kāi)發(fā)指南” 學(xué)習(xí)分享
- 智能標(biāo)注和notebook演示數(shù)據(jù)下載
- 主動(dòng)學(xué)習(xí)解決數(shù)據(jù)標(biāo)注難題