- 神經(jīng)網(wǎng)絡(luò)訓(xùn)練優(yōu)化方法 內(nèi)容精選 換一換
-
單點(diǎn)抓拍、攝像頭獨(dú)立抓拍、電瓶車(chē)檢測(cè)、抓拍檢測(cè)電梯內(nèi)的電瓶車(chē); 產(chǎn)品特點(diǎn): 本算法使用了深度神經(jīng)網(wǎng)絡(luò)技術(shù),通過(guò)使用大量實(shí)際場(chǎng)景圖片訓(xùn)練得到的模型,實(shí)現(xiàn)對(duì)電瓶車(chē)的檢測(cè),具有速度快、準(zhǔn)確率高的特點(diǎn)。算法特別優(yōu)化了俯視視角下的目標(biāo)檢測(cè),更適合電梯內(nèi)的使用場(chǎng)景。標(biāo)準(zhǔn)測(cè)試場(chǎng)景下檢測(cè)率超過(guò)90%,錯(cuò)誤率小于5%。來(lái)自:云商店行分布式訓(xùn)練原理和代碼改造點(diǎn)。 了解詳情 分布式訓(xùn)練代碼示例 示例:創(chuàng)建DDP分布式訓(xùn)練(PyTorch+GPU) 介紹三種使用訓(xùn)練作業(yè)來(lái)啟動(dòng)PyTorch DDP訓(xùn)練的方法及對(duì)應(yīng)代碼示例。 了解詳情 示例:創(chuàng)建DDP分布式訓(xùn)練(PyTorch+NPU) 介紹了使用訓(xùn)練作業(yè)的自定來(lái)自:專(zhuān)題
- 神經(jīng)網(wǎng)絡(luò)訓(xùn)練優(yōu)化方法 相關(guān)內(nèi)容
-
大V講堂——開(kāi)放環(huán)境下的自適應(yīng)視覺(jué)感知 時(shí)間:2020-12-16 16:01:11 現(xiàn)有機(jī)器視覺(jué)學(xué)習(xí)技術(shù)通常依賴(lài)于大規(guī)模精確標(biāo)注的訓(xùn)練數(shù)據(jù)。在典型實(shí)驗(yàn)室環(huán)境下設(shè)計(jì)和訓(xùn)練的人工智能模型,在行業(yè)應(yīng)用場(chǎng)景變換時(shí),容易導(dǎo)致系統(tǒng)性能急劇下降。本課程將從弱監(jiān)督視覺(jué)理解的角度,介紹在降低模型對(duì)特定應(yīng)用場(chǎng)景數(shù)據(jù)依賴(lài)方面所開(kāi)展的一些研究工作。來(lái)自:百科華為云計(jì)算 云知識(shí) 實(shí)戰(zhàn)篇:神經(jīng)網(wǎng)絡(luò)賦予機(jī)器識(shí)圖的能力 實(shí)戰(zhàn)篇:神經(jīng)網(wǎng)絡(luò)賦予機(jī)器識(shí)圖的能力 時(shí)間:2020-12-09 09:28:38 深度神經(jīng)網(wǎng)絡(luò)讓機(jī)器擁有了視覺(jué)的能力,實(shí)戰(zhàn)派帶你探索深度學(xué)習(xí)! 課程簡(jiǎn)介 本課程主要內(nèi)容包括:深度學(xué)習(xí)平臺(tái)介紹、神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類(lèi)模型、經(jīng)典入門(mén)示例詳解:構(gòu)建手寫(xiě)數(shù)字識(shí)別模型。來(lái)自:百科
- 神經(jīng)網(wǎng)絡(luò)訓(xùn)練優(yōu)化方法 更多內(nèi)容
-
框架管理器離線(xiàn)模型生成介紹 時(shí)間:2020-08-19 17:00:58 離線(xiàn)模型生成以卷積神經(jīng)網(wǎng)絡(luò)為例,在深度學(xué)習(xí)框架下構(gòu)造好相應(yīng)的網(wǎng)絡(luò)模型,并且訓(xùn)練好原始數(shù)據(jù),再通過(guò)離線(xiàn)模型生成器進(jìn)行算子調(diào)度優(yōu)化、權(quán)重?cái)?shù)據(jù)重排和壓縮、內(nèi)存優(yōu)化等,最終生成調(diào)優(yōu)好的離線(xiàn)模型。離線(xiàn)模型生成器主要用來(lái)生成可以高效執(zhí)行在昇騰AI處理器上的離線(xiàn)模型。來(lái)自:百科華為云計(jì)算 云知識(shí) 【云小課】如何查看和優(yōu)化慢SQL 【云小課】如何查看和優(yōu)化慢SQL 時(shí)間:2021-10-14 10:05:36 云小課 數(shù)據(jù)庫(kù) 云數(shù)據(jù)庫(kù) GaussDB(for MySQL) 慢SQL產(chǎn)生的主要原因有SQL編寫(xiě)問(wèn)題、鎖等待、業(yè)務(wù)實(shí)例相互干擾對(duì)IO/CPU資源征來(lái)自:百科了封裝調(diào)用能力。在TBE中有一個(gè)優(yōu)化過(guò)的神經(jīng)網(wǎng)絡(luò)TBE標(biāo)準(zhǔn)算子庫(kù),開(kāi)發(fā)者可以直接利用標(biāo)準(zhǔn)算子庫(kù)中的算子實(shí)現(xiàn)高性能的神經(jīng)網(wǎng)絡(luò)計(jì)算。除此之外,TBE也提供了TBE算子的融合能力,為神經(jīng)網(wǎng)絡(luò)的優(yōu)化開(kāi)辟一條獨(dú)特的路徑。 張量加速引擎功能框架 TBE提供了基于TVM開(kāi)發(fā)自定義算子的能力,通來(lái)自:百科云知識(shí) 數(shù)據(jù)治理 實(shí)施方法 數(shù)據(jù)治理實(shí)施方法 時(shí)間:2020-09-09 11:01:02 數(shù)據(jù)治理實(shí)施方法論按照數(shù)據(jù)治理成熟度評(píng)估->評(píng)估現(xiàn)狀、確定目標(biāo)、分析差距->計(jì)劃制定、計(jì)劃執(zhí)行->持續(xù)監(jiān)測(cè)度量演進(jìn)的關(guān)鍵實(shí)施方法形成數(shù)據(jù)治理實(shí)施閉環(huán)流程。 圖1數(shù)據(jù)治理實(shí)施方法論 這也遵循了PD來(lái)自:百科華為云計(jì)算 云知識(shí) 華為云 CDN 全站加速優(yōu)化網(wǎng)站加載速度 華為云CDN全站加速優(yōu)化網(wǎng)站加載速度 時(shí)間:2023-04-18 17:24:00 【CDN全站加速公測(cè)特惠】 全球使用社交媒體的用戶(hù)數(shù)與日俱增,實(shí)時(shí)、交互和自適應(yīng)的動(dòng)態(tài)內(nèi)容爆發(fā)式增長(zhǎng)。動(dòng)態(tài)內(nèi)容是海量的,然而競(jìng)爭(zhēng)也是激烈的來(lái)自:百科華為云計(jì)算 云知識(shí) DDM 實(shí)現(xiàn)數(shù)據(jù)數(shù)據(jù)分片方法 DDM實(shí)現(xiàn)數(shù)據(jù)數(shù)據(jù)分片方法 時(shí)間:2021-05-31 16:17:12 數(shù)據(jù)庫(kù) 傳統(tǒng)由應(yīng)用自己實(shí)現(xiàn)分片: 1. 應(yīng)用邏輯復(fù)雜:由應(yīng)用改寫(xiě)SQL語(yǔ)句,將SQL路由到不同的DB,并聚合結(jié)果; 2. DB故障和調(diào)整都需要應(yīng)用同步調(diào)整,運(yùn)維難度劇增;來(lái)自:百科
- 《C 語(yǔ)言賦能:粒子群優(yōu)化神經(jīng)網(wǎng)絡(luò)訓(xùn)練之路》
- 神經(jīng)網(wǎng)絡(luò)訓(xùn)練技巧
- 訓(xùn)練優(yōu)化筆記
- 神經(jīng)網(wǎng)絡(luò)的基本概念、架構(gòu)和訓(xùn)練方法
- Python通過(guò)神經(jīng)網(wǎng)絡(luò)訓(xùn)練模型
- 卷積神經(jīng)網(wǎng)絡(luò)是什么?CNN結(jié)構(gòu)、訓(xùn)練與優(yōu)化一文全解
- MATLAB在機(jī)器學(xué)習(xí)模型訓(xùn)練中的應(yīng)用與優(yōu)化方法
- 神經(jīng)網(wǎng)絡(luò)的參數(shù)形成與訓(xùn)練
- 神經(jīng)網(wǎng)絡(luò)訓(xùn)練loss不下降原因集合
- Resnet訓(xùn)練性能優(yōu)化