- 神經(jīng)網(wǎng)絡(luò)入門 內(nèi)容精選 換一換
- 神經(jīng)網(wǎng)絡(luò)入門 相關(guān)內(nèi)容
-
來自:百科華為云CodeArts API實(shí)用體驗(yàn)入門篇:API開發(fā)的必備神器 華為云CodeArts API實(shí)用體驗(yàn)入門篇:API開發(fā)的必備神器 時(shí)間:2024-05-30 11:46:52 API開發(fā)的必備神器:華為云CodeArts API實(shí)用體驗(yàn)入門篇 今天我想給大家推薦一款A(yù)PI全生來自:百科
- 神經(jīng)網(wǎng)絡(luò)入門 更多內(nèi)容
-
通過本課程的學(xué)習(xí),使學(xué)員了解: 1、如何構(gòu)建高效的神經(jīng)網(wǎng)絡(luò)基礎(chǔ)模型。 2、如何學(xué)習(xí)顯著性物體、邊緣等通用屬性。 3、如何利用通用屬性構(gòu)建弱監(jiān)督學(xué)習(xí)模型,并進(jìn)而利用互聯(lián)網(wǎng)數(shù)據(jù)自主完成知識(shí)學(xué)習(xí)。 課程大綱 第1章 什么是開放環(huán)境的自適應(yīng)感知 第2章 面向識(shí)別與理解的神經(jīng)網(wǎng)絡(luò)共性技術(shù) 第3章 通用視覺基元屬性感知來自:百科部署在AI1型服務(wù)器上執(zhí)行的方法。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 本實(shí)驗(yàn)主要介紹基于AI1型 彈性云服務(wù)器 完成黑白圖像上色應(yīng)用開發(fā),通過該實(shí)驗(yàn)了解將神經(jīng)網(wǎng)絡(luò)模型部署到昇騰310處理器運(yùn)行的一般過程和方法。 基本要求: 1. 對業(yè)界主流的深度學(xué)習(xí)框架(Caffe、TensorFlow等)有一定了解。來自:百科類、基于場景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對圖片內(nèi)容進(jìn)行檢測,準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過二次翻拍、打印翻拍等手法二次處理的圖片。利用翻拍識(shí)別來自:百科簽 視頻 OCR 識(shí)別視頻中出現(xiàn)的文字內(nèi)容,包括字幕、彈幕、以及部分自然場景文字和藝術(shù)字等 產(chǎn)品優(yōu)勢 識(shí)別準(zhǔn)確 采用標(biāo)簽排序?qū)W習(xí)算法與卷積神經(jīng)網(wǎng)絡(luò)算法,識(shí)別精度高,支持實(shí)時(shí)識(shí)別與檢測 簡單易用 提供符合RESTful的API訪問接口,使用方便,用戶的業(yè)務(wù)系統(tǒng)可快速集成 層次標(biāo)簽 層來自:百科華為云計(jì)算 云知識(shí) 零門檻入門數(shù)據(jù)庫學(xué)習(xí)之關(guān)系型數(shù)據(jù)庫架構(gòu) 零門檻入門數(shù)據(jù)庫學(xué)習(xí)之關(guān)系型數(shù)據(jù)庫架構(gòu) 時(shí)間:2021-01-11 09:37:48 關(guān)系型數(shù)據(jù)庫 數(shù)據(jù)庫 早期在數(shù)據(jù)量還不是很大的時(shí)候,數(shù)據(jù)庫就采用一種很簡單的單機(jī)服務(wù),在一臺(tái)專用的服務(wù)器上安裝數(shù)據(jù)庫軟件,對外提供數(shù)據(jù)來自:百科目前 內(nèi)容審核 包括 內(nèi)容審核-圖像 、 內(nèi)容審核-文本 、 內(nèi)容審核-視頻 。提供了清晰度檢測、扭曲校正、文本內(nèi)容檢測、圖像內(nèi)容檢測和 視頻審核 服務(wù)。 內(nèi)容審核-圖像 圖像內(nèi)容審核,利用深度神經(jīng)網(wǎng)絡(luò)模型對圖片內(nèi)容進(jìn)行檢測,準(zhǔn)確識(shí)別圖像中的涉政敏感人物、暴恐元素、涉黃內(nèi)容等,幫助業(yè)務(wù)規(guī)避違規(guī)風(fēng)險(xiǎn)。 內(nèi)容審核-文本 文本內(nèi)容審核 ,采用人來自:百科本實(shí)驗(yàn)指導(dǎo)用戶在華為云ModelArts平臺(tái)對預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建 人臉識(shí)別 應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 掌握MXNet AI引擎用法; 掌握基于MXNet構(gòu)建人臉識(shí)別神經(jīng)網(wǎng)絡(luò); 掌握華為云ModelArts SDK創(chuàng)建訓(xùn)練作業(yè)、模型部署和模型測試; 掌握ModelArts自研分布式訓(xùn)練框架MoXing。 實(shí)驗(yàn)摘要來自:百科更高。 RASR優(yōu)勢: 識(shí)別準(zhǔn)確率:采用最新一代 語音識(shí)別 技術(shù),基于DNN(深層神經(jīng)網(wǎng)絡(luò))技術(shù),大大提高了抗噪性能,使識(shí)別準(zhǔn)確率顯著提升。 識(shí)別速度快:把語言模型,詞典和聲學(xué)模型統(tǒng)一集成為一個(gè)大的神經(jīng)網(wǎng)絡(luò),同時(shí)在工程上進(jìn)行了大量的優(yōu)化,大幅提升解碼速度,使識(shí)別速度在業(yè)內(nèi)處領(lǐng)先地位。來自:百科
- 卷積神經(jīng)網(wǎng)絡(luò)入門基礎(chǔ)
- 循環(huán)神經(jīng)網(wǎng)絡(luò)入門基礎(chǔ)
- 如何搭建神經(jīng)網(wǎng)絡(luò),神經(jīng)網(wǎng)絡(luò)入門必備
- 神經(jīng)網(wǎng)絡(luò)入門基礎(chǔ)知識(shí)
- 機(jī)器學(xué)習(xí)系列之神經(jīng)網(wǎng)絡(luò)入門基礎(chǔ)知識(shí)
- [Python人工智能] 一.TensorFlow環(huán)境搭建及神經(jīng)網(wǎng)絡(luò)入門 丨【百變AI秀】
- 深度學(xué)習(xí)入門之神經(jīng)網(wǎng)絡(luò)
- 從零開始學(xué)習(xí)Python人工智能:神經(jīng)網(wǎng)絡(luò)和機(jī)器學(xué)習(xí)入門指南
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——1.3 卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用和影響