- 基于大數(shù)據(jù)數(shù)據(jù)分析 內(nèi)容精選 換一換
-
管理局共同主辦,以”數(shù)聚粵港澳,智匯大灣區(qū)"為主題,面向中國大陸和中國港澳地區(qū)高等院校、專業(yè)研究機(jī)構(gòu)、數(shù)據(jù)分析公司、開發(fā)者等專業(yè)對象舉辦的大型數(shù)據(jù)創(chuàng)新類競賽。 【賽事簡介】 “華為云杯”2019 深圳開放數(shù)據(jù)應(yīng)用創(chuàng)新大賽是由深圳市政務(wù)服務(wù)數(shù)據(jù)管理局聯(lián)合深圳市坪山區(qū)人民政府與深圳市前海管理局共同主辦來自:百科來自:百科
- 基于大數(shù)據(jù)數(shù)據(jù)分析 相關(guān)內(nèi)容
-
態(tài),您可基于標(biāo)準(zhǔn)SQL,結(jié)合商業(yè)智能工具,經(jīng)濟(jì)高效地挖掘和分析海量數(shù)據(jù)。 報(bào)名學(xué)習(xí) 最新文章 OLTP和OLAP的比較 數(shù)據(jù)倉庫DWS應(yīng)用案例 數(shù)據(jù)處理耗時(shí)從天級縮短至小時(shí)級 數(shù)據(jù)倉庫DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例 數(shù)據(jù)倉庫DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 數(shù)據(jù)倉庫DWS動手實(shí)踐來自:百科,標(biāo)準(zhǔn)SQL接口,無開發(fā)障礙;內(nèi)置OLAP數(shù)據(jù)庫,配合BI提供亞秒級查詢響應(yīng)。 立即學(xué)習(xí) 最新文章 炎炎夏日都要熱融化了,新冠疫苗又是如何安全高效到達(dá)各地的? IoT邊緣如何實(shí)現(xiàn)海量IoT數(shù)據(jù)就地處理 5G通信關(guān)鍵技術(shù)解讀 5G三大場景的應(yīng)用介紹 5G商用解決方案介紹來自:百科
- 基于大數(shù)據(jù)數(shù)據(jù)分析 更多內(nèi)容
-
實(shí)例。 云數(shù)據(jù)庫 GaussDB 精選文章推薦 永久免費(fèi)mysql云數(shù)據(jù)庫 常見的數(shù)據(jù)庫 免費(fèi)的云數(shù)據(jù)庫 MySQL創(chuàng)建數(shù)據(jù)庫語句 數(shù)據(jù)庫登錄入口_華為GaussDB分布式數(shù)據(jù)庫免費(fèi)領(lǐng)取 MySQL云數(shù)據(jù)庫 免費(fèi)數(shù)據(jù)庫 關(guān)系數(shù)據(jù)庫管理系統(tǒng)_數(shù)據(jù)庫管理系統(tǒng)、數(shù)據(jù)庫應(yīng)用 數(shù)據(jù)庫軟件免費(fèi)版來自:專題華為云計(jì)算 云知識 基于深度學(xué)習(xí)算法的 語音識別 基于深度學(xué)習(xí)算法的語音識別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識別的實(shí)戰(zhàn)演練,讓使用者在了解語音識別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科華為云計(jì)算 云知識 基于IoT平臺構(gòu)建智慧路燈應(yīng)用 基于IoT平臺構(gòu)建智慧路燈應(yīng)用 時(shí)間:2020-11-30 09:36:38 本實(shí)驗(yàn)指導(dǎo)用戶基于華為云IoT平臺,快速開發(fā)屬于自己的智慧路燈應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 本實(shí)驗(yàn)將指導(dǎo)您開發(fā)一個(gè)基于 物聯(lián)網(wǎng)平臺 的智慧路燈應(yīng)用。 通過本實(shí)驗(yàn),您將能夠:來自:百科華為云計(jì)算 云知識 基于 MRS 分析車主駕駛行為 基于MRS分析車主駕駛行為 時(shí)間:2020-11-25 10:12:01 本視頻主要為您介紹基于MRS分析車主駕駛行為的操作教程指導(dǎo)。 場景描述: 目的: 了解MRS的基本功能,利用MRS服務(wù)的Spark組件,對車主的駕駛行為進(jìn)行分析統(tǒng)計(jì),得到用戶駕駛行為的分析結(jié)果。來自:百科貫穿著數(shù)據(jù)分析的整個(gè)過程: 數(shù)據(jù)接入階段:數(shù)據(jù)質(zhì)量參差不齊、且面臨多種異構(gòu)數(shù)據(jù)源接入 數(shù)據(jù)準(zhǔn)備階段:缺少統(tǒng)一數(shù)據(jù)模型,需要進(jìn)行大量的數(shù)據(jù)抽取、轉(zhuǎn)換等處理 數(shù)據(jù)存儲階段:海量數(shù)據(jù)查詢效率低下,數(shù)據(jù)多份存儲、數(shù)據(jù)管理成本高昂 數(shù)據(jù)分析階段:不同類型數(shù)據(jù)分析數(shù)據(jù)源不同,形成數(shù)據(jù)孤島、存來自:百科四個(gè)特點(diǎn): “大”即物聯(lián)網(wǎng)數(shù)據(jù)體量大,我們經(jīng)常聽到的一個(gè)經(jīng)典的案例,即GE發(fā)動機(jī)有成百上千個(gè)傳感器,毫秒級頻度產(chǎn)生各種數(shù)據(jù)。一次飛機(jī)的飛行就可以超過1TB的數(shù)據(jù)量。很多工業(yè)場景產(chǎn)生的數(shù)據(jù)量可能會更大。 “小”即物聯(lián)網(wǎng)數(shù)據(jù)的價(jià)值密度小,或者也可以理解為要從海量的數(shù)據(jù)中找到價(jià)值的信息是一個(gè)比較難的事情。來自:百科
- 【業(yè)務(wù)數(shù)據(jù)分析】——十大常用數(shù)據(jù)分析方法
- 《Spark數(shù)據(jù)分析:基于Python語言 》
- Spark基于搜狗日志數(shù)據(jù)分析
- 數(shù)據(jù)分析八大常用分析模型
- 《Spark數(shù)據(jù)分析:基于Python語言 》 —2.8.2 GCP
- 《Spark數(shù)據(jù)分析:基于Python語言 》 —2.8.3 Databricks
- 《Spark數(shù)據(jù)分析:基于Python語言 》 —2.1.3 基于YARN運(yùn)行Spark
- 《Spark數(shù)據(jù)分析:基于Python語言 》 —2.1.4 基于Mesos運(yùn)行Spark
- 《Spark數(shù)據(jù)分析:基于Python語言 》 —1.2 Spark簡介
- 《Spark數(shù)據(jù)分析:基于Python語言 》 —3.5 本章小結(jié)