- 數(shù)據(jù)倉庫與數(shù)據(jù)挖掘的例子 內(nèi)容精選 換一換
-
分析服務(wù)與資產(chǎn)模型深度整合,在相關(guān)數(shù)據(jù)分析作業(yè)的定義中,開發(fā)者可以方便引用物聯(lián)網(wǎng)的模型數(shù)據(jù),大大提升數(shù)據(jù)分析的效率 華為云物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)是以物聯(lián)網(wǎng)資產(chǎn)模型為中心的分析服務(wù)。不同于公有云上的通用型大數(shù)據(jù)相關(guān)產(chǎn)品,物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)與資產(chǎn)模型深度整合,在相關(guān)數(shù)據(jù)分析作業(yè)的定義中,來自:專題不同于傳統(tǒng)業(yè)務(wù)場景,時(shí)序數(shù)據(jù)的產(chǎn)生通常以一個(gè)固定的時(shí)間頻率進(jìn)行采集,不受其他因素的制約,其數(shù)據(jù)生成的速度是相對(duì)平穩(wěn)。 高壓縮率 高壓縮率能夠帶來兩方面的收益。一方面能夠節(jié)省大量的硬件存儲(chǔ)成本,節(jié)省硬盤的開銷。另一方面壓縮后的數(shù)據(jù)可以更容易存儲(chǔ)到內(nèi)存中,顯著提高查詢的性能。 高壓縮率能夠帶來兩方來自:專題
- 數(shù)據(jù)倉庫與數(shù)據(jù)挖掘的例子 相關(guān)內(nèi)容
-
利用DWS進(jìn)行數(shù)據(jù)清洗加工,支持?jǐn)?shù)據(jù)更新; 利用DWS的標(biāo)準(zhǔn)SQL實(shí)現(xiàn)數(shù)據(jù)復(fù)雜關(guān)聯(lián)查詢。 客戶價(jià)值: 數(shù)據(jù)處理耗時(shí)從1天降至3個(gè)小時(shí); 開發(fā)人員基于SQL語言可快速開發(fā)分析應(yīng)用,同時(shí)將可分析維度從2-3個(gè)擴(kuò)展為5-10個(gè),擴(kuò)充業(yè)務(wù)范圍; 在DWS中維護(hù)維度數(shù)據(jù),再更新ES中數(shù)據(jù),降低了數(shù)據(jù)更新的工作量。 文中課程來自:百科
- 數(shù)據(jù)倉庫與數(shù)據(jù)挖掘的例子 更多內(nèi)容
-
。 充分數(shù)據(jù)挖掘 如何盡可能的使用各種分析手段,從海量的物聯(lián)網(wǎng)數(shù)據(jù)中挖掘有價(jià)值的信息。 提升處理效率 面對(duì)IoT設(shè)備持續(xù)不斷的數(shù)據(jù)注入,如何在數(shù)據(jù)處理的各個(gè)環(huán)節(jié)(接入,清洗,入庫,分析,呈現(xiàn))實(shí)現(xiàn)最佳處性能。 管理數(shù)據(jù)質(zhì)量 如何建立一套可靠的數(shù)據(jù)質(zhì)量評(píng)估體系,并對(duì)質(zhì)量差的數(shù)據(jù)進(jìn)行合適的處理(糾偏,忽略等)。來自:百科庫服務(wù),為用戶提供海量數(shù)據(jù)的存儲(chǔ)、挖掘和分析能力。 助力某銀行提升數(shù)據(jù)分析性能30%,實(shí)現(xiàn)分析決策一體化 應(yīng)用場景:替換Oracle、TD、GP、Vertica、Gbase、Impala 數(shù)據(jù)倉庫 ,建設(shè)滿足未來IT架構(gòu)云化演進(jìn)的分布式數(shù)據(jù)倉庫。 客戶痛點(diǎn): Teradata成本高,一體機(jī)封閉架構(gòu),技術(shù)無法自主可控;來自:百科安全管理最佳實(shí)踐 基于角色的權(quán)限管理(RBAC) 基于角色的用戶管理(Role-Based Access Control,簡稱RBAC)是通過為角色賦予權(quán)限,用戶通過成為適當(dāng)的角色而得到這些角色的權(quán)限。 查看更多 實(shí)現(xiàn)數(shù)據(jù)列的加解密 數(shù)據(jù)加密 作為有效防止未授權(quán)訪問和防護(hù)數(shù)據(jù)泄露的技術(shù),在各種信來自:專題為什么要使用數(shù)據(jù)倉庫? 數(shù)據(jù)倉庫主要適用于企業(yè)數(shù)據(jù)的關(guān)聯(lián)和聚合等分析場景,并從中發(fā)掘出數(shù)據(jù)背后的商業(yè)信息供決策者參考。這里的數(shù)據(jù)發(fā)掘主要指涉及多張表的大范圍的數(shù)據(jù)聚合和關(guān)聯(lián)的復(fù)雜查詢。 使用數(shù)據(jù)倉庫,通過某個(gè)數(shù)據(jù)轉(zhuǎn)換(ETL)的過程,業(yè)務(wù)運(yùn)營數(shù)據(jù)庫的數(shù)據(jù)可以被拷貝到數(shù)據(jù)倉庫中供分析計(jì)來自:專題,成為企業(yè)經(jīng)營的新趨勢和迫切訴求。DWS Express可直接對(duì)存儲(chǔ)在 對(duì)象存儲(chǔ)OBS 上的大數(shù)據(jù)平臺(tái)集成、處理后的數(shù)據(jù)進(jìn)行分析。 優(yōu)勢 統(tǒng)一分析入口:以DWS的SQL作為上層應(yīng)用的統(tǒng)一入口,應(yīng)用開發(fā)人員使用熟悉的SQL語言即可訪問所有數(shù)據(jù)。 實(shí)時(shí)交互式分析:針對(duì)即時(shí)的分析需求,分析人員通過DWS來自:專題對(duì)象存儲(chǔ) OBS 應(yīng)用場景 對(duì)象存儲(chǔ)OBS的大數(shù)據(jù)分析 云硬盤的關(guān)系型數(shù)據(jù)庫 對(duì)象存儲(chǔ)OBS的線 視頻點(diǎn)播 彈性文件的文件共享 云備份的數(shù)據(jù)備份與恢復(fù) 對(duì)象存儲(chǔ)OBS的大數(shù)據(jù)分析 大數(shù)據(jù)分析 提供高性能、高可靠、低時(shí)延、低成本的海量存儲(chǔ)系統(tǒng),與華為云的大數(shù)據(jù)服務(wù)組合使用,能夠大幅降低成本來自:專題附加請(qǐng)求頭字段,如指定的URI和HTTP方法所要求的字段。 x-sdk-date: 請(qǐng)求的發(fā)生時(shí)間,格式為(YYYYMMDD'T'HHMMSS'Z')。 取值為當(dāng)前系統(tǒng)的GMT時(shí)間。 Host: 請(qǐng)求的服務(wù)器信息,從 GaussDB (DWS) API的URL中獲取。值為hostname[來自:專題購買并安裝數(shù)據(jù)倉庫軟件; 租用云主機(jī); 招聘專業(yè)DBA運(yùn)維人員。 華為云DWS 無需購買和安裝任何軟硬件; 按需隨時(shí)租用 DDS ; 無需招聘DBA,運(yùn)維人員。 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。來自:百科
- 數(shù)據(jù)挖掘:數(shù)據(jù)倉庫相關(guān)知識(shí)筆記
- 五十六、 白話講解商業(yè)智能 BI、數(shù)據(jù)倉庫 DW、數(shù)據(jù)挖掘 DM
- Group_concat介紹與例子
- 漫談數(shù)據(jù)倉庫的分層架構(gòu)與演進(jìn)
- 云端數(shù)據(jù)倉庫的模式選型與建設(shè)
- 數(shù)據(jù)庫 與 數(shù)據(jù)倉庫
- 數(shù)據(jù)倉庫技術(shù)與Hive入門
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘總結(jié) ( 數(shù)據(jù)挖掘相關(guān)概念 ) ★★
- 數(shù)據(jù)挖掘技術(shù)與應(yīng)用之NLTK的使用
- 使用華為云數(shù)據(jù)倉庫服務(wù)實(shí)現(xiàn)大數(shù)據(jù)分析和數(shù)據(jù)挖掘
- 數(shù)據(jù)倉庫服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉庫培訓(xùn)課程_數(shù)據(jù)倉庫視頻教程
- 智能數(shù)據(jù)洞察 DataArts Insight
- 數(shù)據(jù)倉庫服務(wù) DWS
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)兼容性
- 數(shù)據(jù)倉庫服務(wù) DWS入門
- 數(shù)據(jù)倉庫服務(wù) DWS功能
- 數(shù)據(jù)倉庫服務(wù) DWS資源
- 數(shù)據(jù)倉庫服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉庫數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 數(shù)據(jù)倉庫服務(wù)應(yīng)用場景_數(shù)據(jù)倉庫服務(wù)客戶案例_GaussDB(DWS)