- spark 使用神經(jīng)網(wǎng)絡(luò) 內(nèi)容精選 換一換
-
倍的計(jì)算能力。Spark可以使用HDFS作為底層存儲(chǔ),使用戶能夠快速地從MapReduce切換到Spark計(jì)算平臺(tái)上去。Spark提供一站式數(shù)據(jù)分析能力,包括小批量流式處理、離線批處理、SQL查詢、數(shù)據(jù)挖掘等,用戶可以在同一個(gè)應(yīng)用中無縫結(jié)合使用這些能力。 Spark的特點(diǎn)如下:來自:專題
- spark 使用神經(jīng)網(wǎng)絡(luò) 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 時(shí)間:2020-12-07 16:53:14 HCIP-AI EI Developer V2.0系列課程。神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)的重要基礎(chǔ),理解神經(jīng)網(wǎng)絡(luò)的基本原理、優(yōu)化目標(biāo)與實(shí)現(xiàn)方法是學(xué)習(xí)后面內(nèi)容的關(guān)鍵,這也是本課程的重點(diǎn)所在。 目標(biāo)學(xué)員來自:百科云知識(shí) 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 時(shí)間:2020-12-14 10:07:11 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索是當(dāng)前深度學(xué)習(xí)最熱門的話題之一,已經(jīng)成為了一大研究潮流。本課程將介紹神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索的理論基礎(chǔ)、應(yīng)用和發(fā)展現(xiàn)狀。 課程簡(jiǎn)介 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索(NAS)來自:百科
- spark 使用神經(jīng)網(wǎng)絡(luò) 更多內(nèi)容
-
Spark SQL作業(yè)的特點(diǎn)與功能 Spark SQL作業(yè)的特點(diǎn)與功能 數(shù)據(jù)湖探索 DLI是完全兼容Apache Spark,也支持標(biāo)準(zhǔn)的Spark SQL作業(yè), DLI 在開源Spark基礎(chǔ)上進(jìn)行了大量的性能優(yōu)化與服務(wù)化改造,不僅兼容Apache Spark生態(tài)和接口,性能較開源提升了2來自:專題
流程編排器負(fù)責(zé)完成神經(jīng)網(wǎng)絡(luò)在昇騰AI處理器上的落地與實(shí)現(xiàn),統(tǒng)籌了整個(gè)神經(jīng)網(wǎng)絡(luò)生效的過程。 數(shù)字視覺預(yù)處理模塊在輸入之前進(jìn)行一次數(shù)據(jù)處理和修飾,來滿足計(jì)算的格式需求。 張量加速引擎作為神經(jīng)網(wǎng)絡(luò)算子兵工廠,為神經(jīng)網(wǎng)絡(luò)模型源源不斷提供功能強(qiáng)大的計(jì)算算子。 框架管理器將原始神經(jīng)網(wǎng)絡(luò)模型轉(zhuǎn)換成昇來自:百科
云知識(shí) 基于Spark實(shí)現(xiàn)車主駕駛行為分析 基于Spark實(shí)現(xiàn)車主駕駛行為分析 時(shí)間:2020-12-02 11:15:56 本實(shí)驗(yàn)通過 MRS 服務(wù)Spark組件分析統(tǒng)計(jì)指定時(shí)間內(nèi),車主急加速、急剎車、空擋滑行、超速、疲勞駕駛等違法行為的次數(shù)。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 1. 使用MRS服務(wù)Spark組件數(shù)據(jù)分析;來自:百科
華為云計(jì)算 云知識(shí) 華為云MapReduce執(zhí)行Spark SQL語(yǔ)句 華為云MapReduce執(zhí)行Spark SQL語(yǔ)句 時(shí)間:2020-11-24 15:57:34 本視頻主要為您介紹華為云MapReduce執(zhí)行Spark SQL語(yǔ)句的操作教程指導(dǎo)。 場(chǎng)景描述: MapReduce服務(wù) (MapReduce來自:百科
華為云計(jì)算 云知識(shí) 實(shí)戰(zhàn)篇:神經(jīng)網(wǎng)絡(luò)賦予機(jī)器識(shí)圖的能力 實(shí)戰(zhàn)篇:神經(jīng)網(wǎng)絡(luò)賦予機(jī)器識(shí)圖的能力 時(shí)間:2020-12-09 09:28:38 深度神經(jīng)網(wǎng)絡(luò)讓機(jī)器擁有了視覺的能力,實(shí)戰(zhàn)派帶你探索深度學(xué)習(xí)! 課程簡(jiǎn)介 本課程主要內(nèi)容包括:深度學(xué)習(xí)平臺(tái)介紹、神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類模型、經(jīng)典入門示例詳解:構(gòu)建手寫數(shù)字識(shí)別模型。來自:百科
直播帶貨風(fēng)格文案 概述 神經(jīng)網(wǎng)絡(luò)介紹 營(yíng)銷宣傳風(fēng)格文案(20句) 營(yíng)銷宣傳風(fēng)格文案(20句) 解決方案簡(jiǎn)介 如何玩轉(zhuǎn)每日站會(huì):解決措施 什么是開天 集成工作臺(tái) :為什么選擇開天集成工作臺(tái) 概述 圖引擎 編輯器介紹 CodeArts前端DevOps實(shí)踐 Scala:Spark Streaming常用接口來自:云商店
華為云計(jì)算 云知識(shí) 實(shí)時(shí)流計(jì)算服務(wù) 創(chuàng)建Spark自定義作業(yè)及查看作業(yè)執(zhí)行結(jié)果 實(shí)時(shí)流計(jì)算服務(wù)創(chuàng)建Spark自定義作業(yè)及查看作業(yè)執(zhí)行結(jié)果 時(shí)間:2020-11-25 15:19:18 本視頻主要為您介紹實(shí)時(shí)流計(jì)算服務(wù)創(chuàng)建Spark自定義作業(yè)及查看作業(yè)執(zhí)行結(jié)果的操作教程指導(dǎo)。 場(chǎng)景描述:來自:百科
隨著大數(shù)據(jù)爆炸式的增長(zhǎng),應(yīng)用大規(guī)模數(shù)據(jù)處理系統(tǒng)分析大數(shù)據(jù)變得越來越重要。其中,Spark是當(dāng)今應(yīng)用最為廣泛通用的大數(shù)據(jù)先進(jìn)技術(shù)之一。BoostKit大數(shù)據(jù)使能套件提供了Spark性能改進(jìn)的各種優(yōu)化技術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn);來自:百科
多模態(tài)識(shí)別 綜合圖像、光流、聲音等信息,識(shí)別動(dòng)作更準(zhǔn)確 識(shí)別準(zhǔn)確 采用3D卷積神經(jīng)網(wǎng)絡(luò)算法,動(dòng)作識(shí)別準(zhǔn)確度高 對(duì)復(fù)雜場(chǎng)景魯棒性強(qiáng) 對(duì)不同天氣條件、不同的攝像頭角度等復(fù)雜場(chǎng)景的視頻動(dòng)作識(shí)別具有良好的魯棒性 建議搭配使用: 對(duì)象存儲(chǔ)服務(wù) OBS 4.視頻人物分析 對(duì)媒體視頻中的公眾人物進(jìn)行分析來自:百科
Engine)作為算子的兵工廠,為基于昇騰AI處理器運(yùn)行的神經(jīng)網(wǎng)絡(luò)提供算子開發(fā)能力,用TBE語(yǔ)言編寫的TBE算子來構(gòu)建各種神經(jīng)網(wǎng)絡(luò)模型。同時(shí),TBE對(duì)算子也提供了封裝調(diào)用能力。在TBE中有一個(gè)優(yōu)化過的神經(jīng)網(wǎng)絡(luò)TBE標(biāo)準(zhǔn)算子庫(kù),開發(fā)者可以直接利用標(biāo)準(zhǔn)算子庫(kù)中的算子實(shí)現(xiàn)高性能的神經(jīng)網(wǎng)絡(luò)計(jì)算。除此之外,TBE也提供來自:百科
SQL或自定義作業(yè)。無需關(guān)心計(jì)算集群, 無需學(xué)習(xí)編程技能。完全兼容Apache Flink和Spark API 數(shù)據(jù)湖 探索 數(shù)據(jù)湖探索(Data Lake Insight,簡(jiǎn)稱DLI)是完全兼容Apache Spark、Apache Flink、openLooKeng(基于Apache Pres來自:專題
深度學(xué)習(xí)是一種以人工神經(jīng)網(wǎng)絡(luò)為架構(gòu),對(duì)數(shù)據(jù)進(jìn)行表征學(xué)習(xí)的算法。目前,在圖像、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理、強(qiáng)化學(xué)習(xí)等許多技術(shù)領(lǐng)域中,深度學(xué)習(xí)獲得了廣泛的應(yīng)用,并且在某些問題上已經(jīng)達(dá)到甚至超越了人類的水平。本課程將介紹深度學(xué)習(xí)算法的知識(shí)。 課程簡(jiǎn)介 本課程將會(huì)探討深度學(xué)習(xí)中的基礎(chǔ)理論、算法、使用方法、技巧與不同的深度學(xué)習(xí)模型。來自:百科
是黑白的,但在實(shí)際訓(xùn)練中使用數(shù)據(jù)增強(qiáng)后的圖片能夠獲得更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過人工神經(jīng)網(wǎng)絡(luò)來提取特征,不同層的輸出來自:百科
3、通用業(yè)務(wù)執(zhí)行引擎提供通用的神經(jīng)網(wǎng)絡(luò)推理能力。 在通用業(yè)務(wù)需求上,基于流程編排器定義對(duì)應(yīng)的計(jì)算流程,然后由通用業(yè)務(wù)執(zhí)行引擎進(jìn)行具體的功能實(shí)現(xiàn)。L3應(yīng)用使能層為各領(lǐng)域提供具有計(jì)算和處理能力的引擎,并可以直接使用下一層L2執(zhí)行框架提供的框架調(diào)度能力,通過通用框架來生成相應(yīng)的神經(jīng)網(wǎng)絡(luò)而實(shí)現(xiàn)具體的引擎功能。來自:百科
- Spark_udf使用
- PySpark 教程 - 使用 Python 學(xué)習(xí) Apache Spark
- 【Pyspark】udf使用入門
- Spark學(xué)習(xí)筆記:使用RDD
- 神經(jīng)網(wǎng)絡(luò)_Sequential使用
- Spark Streaming 教程 – 使用 Apache Spark 進(jìn)行情感分析
- spark任務(wù)提交使用Python3
- Spark環(huán)境搭建和使用方法
- 解釋 Spark 在 Databricks 中的使用方式
- 【最佳實(shí)踐】使用Spark MLlib實(shí)現(xiàn)精準(zhǔn)推薦