- bp神經(jīng)網(wǎng)絡(luò)如何優(yōu)化 內(nèi)容精選 換一換
-
來自:云商店框架管理器離線模型生成介紹 時(shí)間:2020-08-19 17:00:58 離線模型生成以卷積神經(jīng)網(wǎng)絡(luò)為例,在深度學(xué)習(xí)框架下構(gòu)造好相應(yīng)的網(wǎng)絡(luò)模型,并且訓(xùn)練好原始數(shù)據(jù),再通過離線模型生成器進(jìn)行算子調(diào)度優(yōu)化、權(quán)重?cái)?shù)據(jù)重排和壓縮、內(nèi)存優(yōu)化等,最終生成調(diào)優(yōu)好的離線模型。離線模型生成器主要用來生成可以高效執(zhí)行在昇騰AI處理器上的離線模型。來自:百科
- bp神經(jīng)網(wǎng)絡(luò)如何優(yōu)化 相關(guān)內(nèi)容
-
通過本課程的學(xué)習(xí),使學(xué)員了解: 1、如何構(gòu)建高效的神經(jīng)網(wǎng)絡(luò)基礎(chǔ)模型。 2、如何學(xué)習(xí)顯著性物體、邊緣等通用屬性。 3、如何利用通用屬性構(gòu)建弱監(jiān)督學(xué)習(xí)模型,并進(jìn)而利用互聯(lián)網(wǎng)數(shù)據(jù)自主完成知識(shí)學(xué)習(xí)。 課程大綱 第1章 什么是開放環(huán)境的自適應(yīng)感知 第2章 面向識(shí)別與理解的神經(jīng)網(wǎng)絡(luò)共性技術(shù) 第3章 通用視覺基元屬性感知來自:百科單點(diǎn)抓拍、攝像頭獨(dú)立抓拍、電瓶車檢測、抓拍檢測電梯內(nèi)的電瓶車; 產(chǎn)品特點(diǎn): 本算法使用了深度神經(jīng)網(wǎng)絡(luò)技術(shù),通過使用大量實(shí)際場景圖片訓(xùn)練得到的模型,實(shí)現(xiàn)對電瓶車的檢測,具有速度快、準(zhǔn)確率高的特點(diǎn)。算法特別優(yōu)化了俯視視角下的目標(biāo)檢測,更適合電梯內(nèi)的使用場景。標(biāo)準(zhǔn)測試場景下檢測率超過90%,錯(cuò)誤率小于5%。來自:云商店
- bp神經(jīng)網(wǎng)絡(luò)如何優(yōu)化 更多內(nèi)容
-
RASR優(yōu)勢: 識(shí)別準(zhǔn)確率:采用最新一代 語音識(shí)別 技術(shù),基于DNN(深層神經(jīng)網(wǎng)絡(luò))技術(shù),大大提高了抗噪性能,使識(shí)別準(zhǔn)確率顯著提升。 識(shí)別速度快:把語言模型,詞典和聲學(xué)模型統(tǒng)一集成為一個(gè)大的神經(jīng)網(wǎng)絡(luò),同時(shí)在工程上進(jìn)行了大量的優(yōu)化,大幅提升解碼速度,使識(shí)別速度在業(yè)內(nèi)處領(lǐng)先地位。 多種識(shí)別模式:來自:百科華為云計(jì)算 云知識(shí) 內(nèi)存優(yōu)化型M3 M3ne型 彈性云服務(wù)器 規(guī)格介紹 內(nèi)存優(yōu)化型M3 M3ne型彈性云服務(wù)器規(guī)格介紹 時(shí)間:2020-03-28 16:59:18 云服務(wù)器 M3型彈性云服務(wù)器基于KVM虛擬化平臺(tái),特別適合處理內(nèi)存中的大型數(shù)據(jù)集,搭載英特爾® 至強(qiáng)® 可擴(kuò)展處理器,來自:百科DL)是機(jī)器學(xué)習(xí)的一種,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的必由之路。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個(gè)隱藏層的多層感知器就是深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過組合低層特征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。來自:百科專業(yè)數(shù)倉支持設(shè)計(jì)應(yīng)用多維分析,快速響應(yīng) 智能設(shè)備維護(hù) 預(yù)測性維護(hù),根據(jù)系統(tǒng)過去和現(xiàn)在的狀態(tài),采用時(shí)間序列預(yù)測、神經(jīng)網(wǎng)絡(luò)預(yù)測和回歸分析等預(yù)測推理方法,預(yù)測系統(tǒng)將來是否會(huì)發(fā)生故障,何時(shí)發(fā)生故障,發(fā)生故障類型,可以提升服務(wù)運(yùn)維效率,降低設(shè)備非計(jì)劃停機(jī)時(shí)間,節(jié)約現(xiàn)場服務(wù)人力成本 優(yōu)勢 多種參數(shù)靈活接入 基于歷史監(jiān)測數(shù)據(jù)、設(shè)來自:百科華為云計(jì)算 云知識(shí) 華為云 FusionInsight 智能 數(shù)據(jù)湖 助力企業(yè)全面演進(jìn)現(xiàn)代數(shù)據(jù)棧,優(yōu)化數(shù)據(jù)服務(wù)和管理 華為云FusionInsight 智能數(shù)據(jù)湖 助力企業(yè)全面演進(jìn)現(xiàn)代數(shù)據(jù)棧,優(yōu)化數(shù)據(jù)服務(wù)和管理 時(shí)間:2023-11-02 16:50:34 隨著大數(shù)據(jù)技術(shù)的發(fā)展,政企數(shù)字化轉(zhuǎn)來自:百科
- BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)
- 【BP分類】基于matlab哈里斯鷹算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)分類【含Matlab源碼 1725期】
- RSNNS包 BP神經(jīng)網(wǎng)絡(luò)
- 【BP時(shí)間序列預(yù)測】基于matlab EMD優(yōu)化BP神經(jīng)網(wǎng)絡(luò)匯率預(yù)測【含Matlab源碼 1742期】
- 【BP回歸預(yù)測】基于matlab思維進(jìn)化算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)回歸預(yù)測【含Matlab源碼 2031期】
- 【BP回歸預(yù)測】基于matlab文化算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)回歸預(yù)測【含Matlab源碼 2124期】
- BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)
- 【BP數(shù)據(jù)預(yù)測】基于matlab灰狼算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)預(yù)測【含Matlab源碼 1729期】