- ai 訓(xùn)練 模型 內(nèi)容精選 換一換
-
注的樣本進(jìn)行訓(xùn)練;“精準(zhǔn)型”會(huì)額外使用未標(biāo)注的樣本做半監(jiān)督訓(xùn)練,使得模型精度更高。 “預(yù)標(biāo)注”表示選擇用戶(hù)模型管理里面的模型,選擇模型時(shí)需要注意模型類(lèi)型和數(shù)據(jù)集的標(biāo)注類(lèi)型相匹配。從當(dāng)前賬號(hào)管理的模型列表中選擇一個(gè)匹配的模型,用于智能標(biāo)注。 下圖為“圖像分類(lèi)”類(lèi)型的智能標(biāo)注: 下圖為“物體檢測(cè)”類(lèi)型的智能標(biāo)注:來(lái)自:百科云知識(shí) 邏輯設(shè)計(jì)和邏輯模型 邏輯設(shè)計(jì)和邏輯模型 時(shí)間:2021-06-02 10:21:11 數(shù)據(jù)庫(kù) 邏輯設(shè)計(jì)階段是將概念模型轉(zhuǎn)化為具體的數(shù)據(jù)模型的過(guò)程。 按照概念設(shè)計(jì)階段建立的基本E-R圖,按選定的目標(biāo)數(shù)據(jù)模型(層次、網(wǎng)狀、關(guān)系、面向?qū)ο螅D(zhuǎn)換成相應(yīng)的邏輯模型。 對(duì)于關(guān)系型數(shù)據(jù)庫(kù)來(lái)自:百科
- ai 訓(xùn)練 模型 相關(guān)內(nèi)容
-
verless全面商業(yè)化。 面向生成式AI浪潮,元戎通用Serverless將持續(xù)聚焦技術(shù)創(chuàng)新,突破大模型推理服務(wù)實(shí)例快速?gòu)椥?、分布式KV Cache池化管理、多模型混部高效協(xié)同調(diào)度、超大規(guī)模分布式訓(xùn)練高可用性等關(guān)鍵技術(shù),構(gòu)筑大模型推理和訓(xùn)練的高性能、低成本、高可用性關(guān)鍵競(jìng)爭(zhēng)力。來(lái)自:百科ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶(hù)快速創(chuàng)建和部署模型,管理全周期AI工作流。 一站式 開(kāi)“箱”即用,涵蓋AI開(kāi)發(fā)全流程,包含數(shù)據(jù)處理、模型開(kāi)發(fā)、訓(xùn)練、管理、來(lái)自:百科
- ai 訓(xùn)練 模型 更多內(nèi)容
-
如果使用過(guò)程中超出了舉辦方提供的現(xiàn)金券額度,需要參賽團(tuán)隊(duì)自行負(fù)責(zé),我方不再負(fù)責(zé)額外提供。 【鯤鵬訓(xùn)練營(yíng)暨鯤鵬應(yīng)用開(kāi)發(fā)者比賽議程】 1、時(shí)間:5月11日-5月25日為訓(xùn)練營(yíng)暨大賽報(bào)名時(shí)間; 2、6月1日-17日為訓(xùn)練營(yíng)(兩期)授課階段,兩期訓(xùn)練營(yíng)課程內(nèi)容一樣,同一隊(duì)伍不可重復(fù)參加; 3、6月18日-7月24日為大賽時(shí)間;來(lái)自:百科現(xiàn)有機(jī)器視覺(jué)學(xué)習(xí)技術(shù)通常依賴(lài)于大規(guī)模精確標(biāo)注的訓(xùn)練數(shù)據(jù)。在典型實(shí)驗(yàn)室環(huán)境下設(shè)計(jì)和訓(xùn)練的人工智能模型,在行業(yè)應(yīng)用場(chǎng)景變換時(shí),容易導(dǎo)致系統(tǒng)性能急劇下降。本課程將從弱監(jiān)督視覺(jué)理解的角度,介紹在降低模型對(duì)特定應(yīng)用場(chǎng)景數(shù)據(jù)依賴(lài)方面所開(kāi)展的一些研究工作。 課程簡(jiǎn)介 本課程介紹了在降低模型對(duì)特定應(yīng)用場(chǎng)景數(shù)據(jù)依賴(lài)方面所開(kāi)展的一些研究工作。來(lái)自:百科華為云計(jì)算 云知識(shí) AI開(kāi)發(fā)平臺(tái)ModelArts AI開(kāi)發(fā)平臺(tái)ModelArts 時(shí)間:2020-12-08 09:26:40 AI開(kāi)發(fā)平臺(tái) ModelArts是面向AI開(kāi)發(fā)者的一站式開(kāi)發(fā)平臺(tái),提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式訓(xùn)練、自動(dòng)化模型生成及端-邊-云模型按需部署能力來(lái)自:百科行作為一個(gè)記錄,列模型數(shù)據(jù)庫(kù)以一列為一個(gè)記錄。(這種模型,數(shù)據(jù)即索引,IO很快,主要是一些分布式數(shù)據(jù)庫(kù)) 鍵值對(duì)模型:存儲(chǔ)的數(shù)據(jù)是一個(gè)個(gè)“鍵值對(duì)” 文檔類(lèi)模型:以一個(gè)個(gè)文檔來(lái)存儲(chǔ)數(shù)據(jù),有點(diǎn)類(lèi)似“鍵值對(duì)”。 常見(jiàn)非關(guān)系模型數(shù)據(jù)庫(kù): 列模型:Hbase 鍵值對(duì)模型:redis,MemcacheDB來(lái)自:百科使用開(kāi)發(fā)環(huán)境將本地開(kāi)發(fā)的MindSpore模型遷移至云上訓(xùn)練???? 本案例介紹如何在本地進(jìn)行MindSpore模型開(kāi)發(fā),并將模型遷移至ModelArts訓(xùn)練。ModelArts支持使用PyCharm進(jìn)行“混動(dòng)”開(kāi)發(fā):“混動(dòng)”開(kāi)發(fā)表示代碼開(kāi)發(fā)和調(diào)試使用本地IDE,按需使用遠(yuǎn)程資源和環(huán)境調(diào)試和訓(xùn)練模型。通過(guò)“混動(dòng)來(lái)自:專(zhuān)題力,使能千行百業(yè)降本增效 免費(fèi)注冊(cè) 管理控制臺(tái) 真人聲音錄制 客戶(hù)錄制真人音頻,上傳至 MetaStudio 進(jìn)行AI訓(xùn)練,即可得到和真人音色1:1復(fù)刻的聲音模型。 聲音模型可實(shí)現(xiàn)文本轉(zhuǎn)語(yǔ)音,應(yīng)用于數(shù)字人視頻制作、直播、交互問(wèn)答等場(chǎng)景中。不同版本錄制規(guī)格如下: 基礎(chǔ)版:20句,每個(gè)音來(lái)自:專(zhuān)題000.00元/年 免費(fèi)AI客服電話(huà)-智能AI客戶(hù)聯(lián)絡(luò)中心-AI智能電話(huà)機(jī)器特征 免費(fèi)AI客服電話(huà)-智能AI客戶(hù)聯(lián)絡(luò)中心-AI智能電話(huà)機(jī)器特征 免費(fèi)AI客服電話(huà)-內(nèi)置ASR引擎 支持ASR,NLP,NLU, TTS 等技術(shù)數(shù)據(jù)整合識(shí)別、響應(yīng)飛速提升 免費(fèi)AI客服電話(huà)-多輪會(huì)話(huà) 領(lǐng)先的來(lái)自:專(zhuān)題本實(shí)驗(yàn)指導(dǎo)用戶(hù)在華為云ModelArts平臺(tái)對(duì)預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建 人臉識(shí)別 應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 掌握MXNet AI引擎用法; 掌握基于MXNet構(gòu)建人臉識(shí)別神經(jīng)網(wǎng)絡(luò); 掌握華為云ModelArts SDK創(chuàng)建訓(xùn)練作業(yè)、模型部署和模型測(cè)試; 掌握ModelArts自研分布式訓(xùn)練框架MoXing。 實(shí)驗(yàn)摘要來(lái)自:百科iLens平臺(tái)部署到設(shè)備上運(yùn)行和管理。 開(kāi)發(fā)流程 數(shù)據(jù)預(yù)處理和模型訓(xùn)練 用戶(hù)在華為云ModelArts平臺(tái)或線(xiàn)下,進(jìn)行數(shù)據(jù)預(yù)處理、算法開(kāi)發(fā)和模型訓(xùn)練,得到模型后,根據(jù)需要部署的設(shè)備芯片類(lèi)型,完成對(duì)應(yīng)的模型轉(zhuǎn)換。 AI應(yīng)用開(kāi)發(fā) 開(kāi)發(fā)者可以選擇基于ModelBox框架進(jìn)行推理階段的代來(lái)自:專(zhuān)題華為云計(jì)算 云知識(shí) AI全棧成長(zhǎng)計(jì)劃-AI應(yīng)用篇 AI全棧成長(zhǎng)計(jì)劃-AI應(yīng)用篇 時(shí)間:2020-12-10 11:10:17 本課程為AI全棧成長(zhǎng)計(jì)劃第三階段課程:AI應(yīng)用篇。您將學(xué)習(xí)到行業(yè)深度應(yīng)用的AI領(lǐng)域知識(shí): OCR 與NLP的概念及其模型開(kāi)發(fā),同時(shí)您也可以選擇體驗(yàn)和學(xué)習(xí)當(dāng)下熱門(mén)的端云協(xié)同AI應(yīng)用開(kāi)發(fā)。來(lái)自:百科
- AI模型的訓(xùn)練過(guò)程步驟
- 網(wǎng)絡(luò)場(chǎng)景AI模型訓(xùn)練效率實(shí)踐
- AI Earth——AI模型訓(xùn)練:如何正確的進(jìn)行樣本點(diǎn)標(biāo)注?
- kaldi語(yǔ)音識(shí)別 chain模型的訓(xùn)練流程
- 練習(xí)使用AI Gallery的預(yù)置算法訓(xùn)練模型
- 《解鎖數(shù)據(jù)版本“魔方”:DataWorks護(hù)航AI模型訓(xùn)練》
- AI——自然語(yǔ)言預(yù)訓(xùn)練模型(Bert模型)之Transformer詳解
- 大模型落地實(shí)戰(zhàn)指南:從選擇到訓(xùn)練,深度解析顯卡選型、模型訓(xùn)練技、模型選擇巧及AI未來(lái)展望---打造AI應(yīng)用新篇章
- 《AI安全之對(duì)抗樣本入門(mén)》—3.6 使用預(yù)訓(xùn)練模型
- DeepSeek NSA:突破數(shù)據(jù)瓶頸,開(kāi)啟AI模型訓(xùn)練新范式