- 訓(xùn)練好的ai模型 內(nèi)容精選 換一換
-
來(lái)自:百科行業(yè)重塑 深厚的行業(yè)積累,分層解耦的架構(gòu),多樣化的部署模式 深厚的行業(yè)積累,分層解耦的架構(gòu),多樣化的部署模式 技術(shù)扎根 全棧技術(shù)創(chuàng)新,極致算力加速大模型開(kāi)發(fā),打造世界AI另一極 全棧技術(shù)創(chuàng)新,極致算力加速大模型開(kāi)發(fā),打造世界AI另一極 開(kāi)放同飛 打造云原生應(yīng)用平臺(tái)AppArts,成立大模型高質(zhì)量數(shù)據(jù)聯(lián)盟來(lái)自:專題
- 訓(xùn)練好的ai模型 相關(guān)內(nèi)容
-
課程簡(jiǎn)介 本課程主要內(nèi)容包括:AI如何滿足定制化需求、從Idea到落地開(kāi)發(fā)者所面臨的挑戰(zhàn)、極“快”致“簡(jiǎn)單”的模型訓(xùn)練。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí)使學(xué)員掌握AI模型訓(xùn)練原理及實(shí)現(xiàn)過(guò)程。 課程大綱 第1節(jié) 導(dǎo)讀&往期內(nèi)容回顧 第2節(jié) AI開(kāi)發(fā)痛點(diǎn)分析 第3節(jié) ModelArts介紹 第4節(jié)來(lái)自:百科2、如何解決訓(xùn)練數(shù)據(jù)的問(wèn)題; 3、運(yùn)用自動(dòng)學(xué)習(xí),快速上手AI。 聽(tīng)眾收益: 1、了解AI開(kāi)發(fā)全流程; 2、了解AI落地過(guò)程中所需要解決的核心問(wèn)題; 3、了解ModelArts的主要能力以及如何快速將AI落地。 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原來(lái)自:百科
- 訓(xùn)練好的ai模型 更多內(nèi)容
-
資源受限:相對(duì)云上資源的海量易獲取,邊側(cè)資源受限(算力、供電、場(chǎng)地等均受限),建設(shè)與維護(hù)成本更高。 如何發(fā)揮邊緣計(jì)算的實(shí)時(shí)性和數(shù)據(jù)安全性,結(jié)合中心云的海量算力優(yōu)勢(shì),實(shí)現(xiàn)AI的邊云協(xié)同,就成了解決上述挑戰(zhàn)的關(guān)鍵課題。 內(nèi)容大綱: 1、業(yè)界邊緣AI遇到的挑戰(zhàn)和痛點(diǎn); 2、邊云協(xié)同AI訓(xùn)練概念及其使用場(chǎng)景、如何應(yīng)對(duì)邊緣AI痛點(diǎn);來(lái)自:百科
華為云計(jì)算 云知識(shí) 邏輯模型建設(shè)的方法 邏輯模型建設(shè)的方法 時(shí)間:2021-06-02 14:25:16 數(shù)據(jù)庫(kù) 在建設(shè)數(shù)據(jù)庫(kù)的邏輯模型時(shí),應(yīng)當(dāng)按照以下流程展開(kāi): 1. 建立命名規(guī)則; 2. 按照設(shè)計(jì)流程設(shè)計(jì)邏輯數(shù)據(jù)模型; 3. 確定實(shí)體和屬性; 4. 確定實(shí)體與實(shí)體之間的關(guān)系; 5. 補(bǔ)充實(shí)體的非健值屬性。來(lái)自:百科
云知識(shí) 數(shù)據(jù)模型類型的對(duì)比 數(shù)據(jù)模型類型的對(duì)比 時(shí)間:2021-05-21 11:05:46 數(shù)據(jù)庫(kù) 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)發(fā)展過(guò)程中產(chǎn)生過(guò)三種基本的數(shù)據(jù)模型:層次模型、網(wǎng)狀模型和關(guān)系模型。本文主要從數(shù)據(jù)結(jié)構(gòu)、數(shù)據(jù)操作、數(shù)據(jù)聯(lián)系及優(yōu)缺點(diǎn)幾個(gè)方面進(jìn)行對(duì)比分析。 層次模型和網(wǎng)狀模型查詢效來(lái)自:百科
兩個(gè)訓(xùn)練作業(yè)的模型都保存在容器相同的目錄下是否有沖突? ModelArts訓(xùn)練作業(yè)之間的存儲(chǔ)目錄相互不影響,每個(gè)環(huán)境之間彼此隔離,看不到其他作業(yè)的數(shù)據(jù)。 訓(xùn)練好的模型是否可以下載或遷移到其他帳號(hào)?如何獲取下載路徑? 通過(guò)訓(xùn)練作業(yè)訓(xùn)練好的模型可以下載,然后將下載的模型上傳存儲(chǔ)至其他帳號(hào)對(duì)應(yīng)區(qū)域的 OBS 中。 獲取模型下載路徑來(lái)自:專題
不一樣的,應(yīng)用難以對(duì)接到設(shè)備,而在標(biāo)準(zhǔn)物模型下,每個(gè)設(shè)備都對(duì)應(yīng)一個(gè)統(tǒng)一的標(biāo)準(zhǔn)物模型,它對(duì)外提供一致的接口,可以直接對(duì)應(yīng)應(yīng)用。 標(biāo)準(zhǔn)物模型可以任意組合產(chǎn)生新的模型,比如可以將攝像頭和燈組裝在一起,組成一個(gè)帶攝像頭的燈,組合后的復(fù)雜物仍然繼承了基礎(chǔ)物的模型,既能夠滿足復(fù)雜場(chǎng)景的需要,也能夠保持其標(biāo)準(zhǔn)模型與應(yīng)用進(jìn)行對(duì)接。來(lái)自:百科
云知識(shí) 推理模型的遷移與調(diào)優(yōu) 推理模型的遷移與調(diào)優(yōu) 時(shí)間:2020-12-08 10:39:19 本課程主要介紹如何將第三方框架訓(xùn)練出來(lái)的模型轉(zhuǎn)換成昇騰專用模型,并進(jìn)行調(diào)優(yōu)。 目標(biāo)學(xué)員 AI領(lǐng)域的開(kāi)發(fā)者 課程目標(biāo) 通過(guò)對(duì)教材的解讀+實(shí)戰(zhàn)演示,使學(xué)員學(xué)會(huì)使用模型轉(zhuǎn)換工具遷移所需要的預(yù)訓(xùn)練模型。來(lái)自:百科
- Google Earth Engine(GEE)—— 萬(wàn)字詳解AI 模型(加載訓(xùn)練好的模型,并將其用于預(yù)測(cè))內(nèi)含代碼
- 《智能系統(tǒng)與技術(shù)叢書 深度學(xué)習(xí)實(shí)踐:基于Caffe的解析》—3.6使用訓(xùn)練好的模型進(jìn)行預(yù)測(cè)
- 鴻蒙的AI模型部署(離線/在線推理)
- AI模型的訓(xùn)練過(guò)程步驟
- TF:基于tensorflow框架利用python腳本下將YoloV3訓(xùn)練好的.ckpt模型文件轉(zhuǎn)換為推理時(shí)采用的.pb文件
- 大模型—AI巨頭的角力場(chǎng)
- 強(qiáng)化學(xué)習(xí) 游戲訓(xùn)練 谷歌足球 vizdoom
- 【AI理論】VGG模型解析
- 微軟密謀超級(jí)AI大模型!LangChain帶你輕松玩轉(zhuǎn)大模型開(kāi)發(fā)
- AI大模型與Python