- 文本分割機(jī)器學(xué)習(xí) 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來自:百科
- 文本分割機(jī)器學(xué)習(xí) 相關(guān)內(nèi)容
-
據(jù)反映了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對(duì)AI開發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理 提供了一套高效便捷的管理和標(biāo)注數(shù)據(jù)集框架。不僅支持圖片、文本、語音、視頻等多種數(shù)據(jù)類型,涵蓋圖像分類、目標(biāo)檢測、音頻分割、文本分類等多個(gè)標(biāo)注場景,可適用于各種AI項(xiàng)來自:百科
- 文本分割機(jī)器學(xué)習(xí) 更多內(nèi)容
-
除了人工標(biāo)注外,ModelArts數(shù)據(jù)管理平臺(tái)還提供了智能標(biāo)注功能,快速完成數(shù)據(jù)標(biāo)注,為您節(jié)省70%以上的標(biāo)注時(shí)間。數(shù)據(jù)管理中的智能標(biāo)注是指基于當(dāng)前標(biāo)注階段的標(biāo)簽及圖片學(xué)習(xí)訓(xùn)練,選中系統(tǒng)中已有的模型進(jìn)行智能標(biāo)注,快速完成剩余圖片的標(biāo)注操作。 須知: 目前只有“圖像分類”和“物體檢測”類型的標(biāo)注作業(yè)支持智能標(biāo)注功能。來自:專題
通過本課程的學(xué)習(xí),使學(xué)員: 1、熟練使用華為云ModelArts一站式 AI開發(fā)平臺(tái) ; 2、系統(tǒng)、完整地了解多項(xiàng)AI領(lǐng)域的基礎(chǔ)知識(shí); 3、學(xué)習(xí)多項(xiàng)AI領(lǐng)域的經(jīng)典算法; 4、掌握一定的模型調(diào)優(yōu)能力,能自己動(dòng)手優(yōu)化模型; 課程大綱 第1章 圖像分類 第2章 物體檢測 第3章 圖像分割 第4章來自:百科
ModelArts訓(xùn)練好后的模型如何獲取? 使用自動(dòng)學(xué)習(xí)產(chǎn)生的模型只能在ModelArts上部署上線,無法下載至本地使用。 使用自定義算法或者訂閱算法訓(xùn)練生成的模型,會(huì)存儲(chǔ)至用戶指定的 OBS 路徑中,供用戶下載。 是否支持圖像分割任務(wù)的訓(xùn)練? 支持。您可以使用以下三種方式實(shí)現(xiàn)圖像分割任務(wù)的訓(xùn)練。 您可以在AI來自:專題
從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語音識(shí)別 、自動(dòng)機(jī)器翻譯、即時(shí)視覺翻譯、刷臉支付、人臉考勤……不知不覺,深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來自:百科
圖像識(shí)別 ( Image Recognition ),基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺內(nèi)容,提供多種物體、場景和概念標(biāo)簽,具備目標(biāo)檢測和屬性識(shí)別等能力,幫助客戶準(zhǔn)確識(shí)別和理解圖像內(nèi)容 查看更多 一句話識(shí)別 短語音識(shí)別將口述音頻轉(zhuǎn)換為文本,通過API調(diào)用識(shí)別不超過一分鐘的不同音頻源發(fā)來的來自:專題
- Spark機(jī)器學(xué)習(xí)實(shí)戰(zhàn) (十一) - 文本情感分類項(xiàng)目實(shí)戰(zhàn)
- 機(jī)器學(xué)習(xí)---樸素貝葉斯算法(20類新聞分類 文本特征抽取-tfidf)
- 人臉分割學(xué)習(xí)筆記
- 【機(jī)器學(xué)習(xí)】機(jī)器學(xué)習(xí)概敘
- 機(jī)器學(xué)習(xí)(01)——機(jī)器學(xué)習(xí)簡介
- 機(jī)器學(xué)習(xí)知多少
- 【機(jī)器學(xué)習(xí)基礎(chǔ)】機(jī)器學(xué)習(xí)介紹
- 【機(jī)器學(xué)習(xí)基礎(chǔ)】機(jī)器學(xué)習(xí)介紹
- [機(jī)器學(xué)習(xí)Lesson 1] 機(jī)器學(xué)習(xí)簡介
- 【機(jī)器學(xué)習(xí)基礎(chǔ)】常用機(jī)器學(xué)習(xí)模型