- 深度學(xué)習(xí)訓(xùn)練算法 內(nèi)容精選 換一換
-
檢測(cè)異常狀態(tài),立即報(bào)警。 該算法保證鐵路線路應(yīng)答器的正常工作,保障了鐵路交通的安全。應(yīng)答器異位檢測(cè)算法針對(duì)鐵路沿線的應(yīng)答器放置狀態(tài)進(jìn)行檢測(cè),判斷應(yīng)答器放置狀態(tài)是否符合規(guī)定要求。采用深度學(xué)習(xí)技術(shù),基于開源yolo算法進(jìn)行深度定制,訓(xùn)練應(yīng)答器放置狀態(tài)的算法模型,將模型通過(guò)轉(zhuǎn)換后,移植到SDC。來(lái)自:云商店很多AI開發(fā)者開發(fā)者在訓(xùn)練得到AI模型之后,必須得在設(shè)備上實(shí)現(xiàn)模型的推理才能獲得相應(yīng)的AI能力,但目前AI模型不能直接在設(shè)備上運(yùn)行起來(lái)。這就意味著,開發(fā)者還得有一套對(duì)應(yīng)的推理框架才能真正實(shí)現(xiàn)AI與IoT設(shè)備的結(jié)合。 另外,目前深度學(xué)習(xí)雖然可以在很多領(lǐng)域超越傳統(tǒng)算法,不過(guò)真正用到實(shí)際產(chǎn)來(lái)自:百科
- 深度學(xué)習(xí)訓(xùn)練算法 相關(guān)內(nèi)容
-
面向有AI基礎(chǔ)的開發(fā)者,提供機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的算法開發(fā)及部署全功能,包含數(shù)據(jù)處理、模型開發(fā)、模型訓(xùn)練、AI應(yīng)用管理和部署上線流程。 涉及計(jì)費(fèi)項(xiàng)包含: 開發(fā)環(huán)境(Notebook) 模型訓(xùn)練(訓(xùn)練作業(yè)) 部署上線(在線服務(wù)) 自動(dòng)學(xué)習(xí) 面向AI基礎(chǔ)能力弱的開發(fā)者,根據(jù)標(biāo)注數(shù)據(jù)、自動(dòng)設(shè)計(jì)、調(diào)優(yōu)、訓(xùn)練模型和部來(lái)自:專題自動(dòng)檢測(cè)壓板投退狀態(tài)并實(shí)時(shí)反饋,為安監(jiān)人員進(jìn)行現(xiàn)場(chǎng)監(jiān)督提供技術(shù)保障。 商品介紹 基于大規(guī)模壓板圖片數(shù)據(jù)檢測(cè)訓(xùn)練,將算法加載到攝像機(jī)內(nèi)部,利用攝像機(jī)AI芯片強(qiáng)大的分析推理能力,實(shí)現(xiàn)視頻畫面實(shí)時(shí)分析,通過(guò)深度學(xué)習(xí)算法實(shí)時(shí)檢測(cè)各種壓板的狀態(tài)。 服務(wù)商簡(jiǎn)介 深圳市鐵越電氣有限公司成立于2000年初,注冊(cè)資金來(lái)自:云商店
- 深度學(xué)習(xí)訓(xùn)練算法 更多內(nèi)容
-
呼吸器顏色智能檢測(cè)是用智能攝像機(jī)的前端AI技術(shù)對(duì)變壓器工作現(xiàn)場(chǎng)的視頻進(jìn)行實(shí)時(shí)分析,基于大規(guī)模呼吸器圖片數(shù)據(jù)檢測(cè)訓(xùn)練,將算法加載到攝像機(jī)內(nèi)部,利用攝像機(jī)AI芯片強(qiáng)大的分析推理能力,實(shí)現(xiàn)視頻畫面實(shí)時(shí)分析,通過(guò)深度學(xué)習(xí)算法準(zhǔn)確判定呼吸器顏色是否變色,監(jiān)理人員能夠第一時(shí)間獲取相關(guān)圖像,并及時(shí)更換硅膠,為變壓器安全運(yùn)行提供安全保障。來(lái)自:云商店
案和實(shí)踐案例四個(gè)方面對(duì)知途教育與華為云深度合作下,產(chǎn)教融合的人才培養(yǎng)模式做了詳細(xì)介紹。也針對(duì)直播間觀眾提出的相關(guān)問(wèn)題做了深度解答。 直播精選問(wèn)答: 1、Q:端云架構(gòu),是先學(xué)習(xí)端,還是先學(xué)習(xí)云? A:沒(méi)有明確界定,可以個(gè)人興趣為主。如果先學(xué)習(xí) 云知識(shí) ,能夠自己改進(jìn)算力模型并輸出結(jié)果,來(lái)自:云商店
低時(shí)延場(chǎng)景 深度學(xué)習(xí) 機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過(guò)程需要處理海量的數(shù)據(jù),推理過(guò)程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中,F(xiàn)PGA以其高并行計(jì)算、硬件可編程、低功耗和低時(shí)延等優(yōu)勢(shì),可針對(duì)不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海量計(jì)算和低來(lái)自:百科
Turbo高性能,加速訓(xùn)練過(guò)程 1、訓(xùn)練數(shù)據(jù)集高速讀取,避免GPU/NPU因存儲(chǔ)I/O等待產(chǎn)生空閑,提升GPU/NPU利用率。 2、大模型TB級(jí)Checkpoint文件秒級(jí)保存和加載,減少訓(xùn)練任務(wù)中斷時(shí)間。 3 數(shù)據(jù)導(dǎo)入導(dǎo)出異步化,不占用訓(xùn)練任務(wù)時(shí)長(zhǎng),無(wú)需部署外部遷移工具 1、訓(xùn)練任務(wù)開始前將數(shù)據(jù)從 OBS 導(dǎo)入到SFS來(lái)自:專題
16:33:42 云計(jì)算 混合云 在以“政企深度用云,釋放數(shù)字生產(chǎn)力”為主題的 華為云Stack 戰(zhàn)略暨新品發(fā)布會(huì)上,華為云提出深度用云三大關(guān)鍵舉措,并發(fā)布華為云Stack 8.2版本,以智能進(jìn)化推動(dòng)創(chuàng)造行業(yè)新價(jià)值。 隨著數(shù)字化進(jìn)程的不斷深入,政企客戶也將進(jìn)入深度用云的新階段,面向未來(lái)的跨越有兩個(gè)核心要素:來(lái)自:百科
華為云計(jì)算 云知識(shí) 大V講堂——預(yù)訓(xùn)練語(yǔ)言模型 大V講堂——預(yù)訓(xùn)練語(yǔ)言模型 時(shí)間:2020-12-15 16:31:00 在自然語(yǔ)言處理(NLP)領(lǐng)域中,使用語(yǔ)言模型預(yù)訓(xùn)練方法在多項(xiàng)NLP任務(wù)上都獲得了不錯(cuò)的提升,廣泛受到了各界的關(guān)注。本課程將簡(jiǎn)單介紹一下預(yù)訓(xùn)練的思想,幾個(gè)代表性模型和它們之間的關(guān)系。來(lái)自:百科
- 深度學(xué)習(xí)算法中的預(yù)訓(xùn)練(Pretraining)
- 深度學(xué)習(xí)算法中的協(xié)同訓(xùn)練(Co-training)
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 淺談深度學(xué)習(xí)中的混合精度訓(xùn)練
- 深度學(xué)習(xí)算法詳細(xì)介紹
- 深度學(xué)習(xí)經(jīng)典算法 | 遺傳算法詳解
- 深度學(xué)習(xí)經(jīng)典算法 | 粒子群算法詳解
- 深度學(xué)習(xí)經(jīng)典算法 | 蟻群算法解析
- 深度學(xué)習(xí)基礎(chǔ)-優(yōu)化算法詳解
- 《駕馭MXNet:深度剖析分布式深度學(xué)習(xí)訓(xùn)練的高效之道》