- 深度學(xué)習(xí)模型優(yōu)化 內(nèi)容精選 換一換
-
LiteOS輕量級(jí)AI推理框架LiteAI,從模型轉(zhuǎn)換、優(yōu)化及執(zhí)行三個(gè)方面向開發(fā)者呈現(xiàn)如何在IoT設(shè)備上實(shí)現(xiàn)AI模型的推理全流程,并結(jié)合智能設(shè)備AI開發(fā)的案例,展示AI部署全過程。 l 針對IoT設(shè)備內(nèi)存空間小的問題,LiteAI應(yīng)用了模型量化技術(shù),將模型參數(shù)從32比特浮點(diǎn)量化到8比特定點(diǎn),實(shí)現(xiàn)75%模型壓縮;實(shí)現(xiàn)來自:百科,減少火災(zāi)隱患。 方案優(yōu)勢 1. 行業(yè)應(yīng)用上算法開發(fā)經(jīng)驗(yàn)積累豐富:算法會(huì)自動(dòng)利用相關(guān)先驗(yàn)知識(shí)對深度學(xué)習(xí)模型的檢測結(jié)果進(jìn)行判別,排除誤檢測,準(zhǔn)確可靠。利用數(shù)字圖像處理技術(shù)和先進(jìn)的深度學(xué)習(xí)技術(shù),可對廚房進(jìn)行全天候智能監(jiān)測。 2. 針對客戶需求進(jìn)行定制化功能開發(fā):針對不同行業(yè)應(yīng)用需求,來自:云商店
- 深度學(xué)習(xí)模型優(yōu)化 相關(guān)內(nèi)容
-
,特別是深度學(xué)習(xí)的大數(shù)據(jù)集,讓訓(xùn)練結(jié)果可重現(xiàn)。 極“快”致“簡”模型訓(xùn)練 自研的MoXing深度學(xué)習(xí)框架,更高效更易用,大大提升訓(xùn)練速度。 云邊端多場景部署 支持模型部署到多種生產(chǎn)環(huán)境,可部署為云端在線推理和批量推理,也可以直接部署到端和邊。 自動(dòng)學(xué)習(xí) 支持多種自動(dòng)學(xué)習(xí)能力,通過來自:百科云知識(shí) 邏輯設(shè)計(jì)和邏輯模型 邏輯設(shè)計(jì)和邏輯模型 時(shí)間:2021-06-02 10:21:11 數(shù)據(jù)庫 邏輯設(shè)計(jì)階段是將概念模型轉(zhuǎn)化為具體的數(shù)據(jù)模型的過程。 按照概念設(shè)計(jì)階段建立的基本E-R圖,按選定的目標(biāo)數(shù)據(jù)模型(層次、網(wǎng)狀、關(guān)系、面向?qū)ο螅D(zhuǎn)換成相應(yīng)的邏輯模型。 對于關(guān)系型數(shù)據(jù)庫來自:百科
- 深度學(xué)習(xí)模型優(yōu)化 更多內(nèi)容
-
掌握常見SQL性能問題的優(yōu)化思路和方法 課程大綱 第1章 DAY1 SQL優(yōu)化基礎(chǔ) 第2章 DAY2 優(yōu)化多表連接 第3章 DAY3 查詢變換和優(yōu)化技巧 第4章 DAY4 優(yōu)化實(shí)戰(zhàn)案例 第5章 DAY5 優(yōu)化實(shí)戰(zhàn)案例進(jìn)階 云數(shù)據(jù)庫 RDS for MySQL 云數(shù)據(jù)庫 RDS for MySQL擁有即開來自:百科
09:28:38 深度神經(jīng)網(wǎng)絡(luò)讓機(jī)器擁有了視覺的能力,實(shí)戰(zhàn)派帶你探索深度學(xué)習(xí)! 課程簡介 本課程主要內(nèi)容包括:深度學(xué)習(xí)平臺(tái)介紹、神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類模型、經(jīng)典入門示例詳解:構(gòu)建手寫數(shù)字識(shí)別模型。 課程目標(biāo) 通過本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門深度學(xué)習(xí)。 課程大綱 第1節(jié)來自:百科
云知識(shí) 【云小課】EI第27課模型調(diào)優(yōu)利器-ModelArts模型評估診斷 【云小課】EI第27課模型調(diào)優(yōu)利器-ModelArts模型評估診斷 時(shí)間:2021-07-06 15:57:56 AI開發(fā)平臺(tái) 在訓(xùn)練模型后,用戶往往需要通過測試數(shù)據(jù)集來評估新模型的泛化能力。通過驗(yàn)證測試數(shù)據(jù)來自:百科
云知識(shí) 數(shù)據(jù)模型類型的對比 數(shù)據(jù)模型類型的對比 時(shí)間:2021-05-21 11:05:46 數(shù)據(jù)庫 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)發(fā)展過程中產(chǎn)生過三種基本的數(shù)據(jù)模型:層次模型、網(wǎng)狀模型和關(guān)系模型。本文主要從數(shù)據(jù)結(jié)構(gòu)、數(shù)據(jù)操作、數(shù)據(jù)聯(lián)系及優(yōu)缺點(diǎn)幾個(gè)方面進(jìn)行對比分析。 層次模型和網(wǎng)狀模型查詢效來自:百科
物聯(lián)網(wǎng)學(xué)習(xí)入門 課程學(xué)習(xí),動(dòng)手實(shí)驗(yàn),技能認(rèn)證,全面掌握物聯(lián)網(wǎng)前沿技術(shù) 物聯(lián)網(wǎng)知識(shí)圖譜 在線課程 01 初學(xué)入門課程、開發(fā)者課程、合作伙伴課程 初學(xué)入門課程、開發(fā)者課程、合作伙伴課程 動(dòng)手實(shí)驗(yàn) 02 精心設(shè)計(jì)云上實(shí)驗(yàn),深度體驗(yàn)云服務(wù) 精心設(shè)計(jì)云上實(shí)驗(yàn),深度體驗(yàn)云服務(wù) 初學(xué)入門 初學(xué)入門來自:專題
云安全 學(xué)習(xí)入門 學(xué)課程、做實(shí)驗(yàn)、考認(rèn)證,云安全知識(shí)一手掌握 云安全產(chǎn)品 云安全知識(shí)圖譜 在線課程 01 初學(xué)者入門課程、開發(fā)者進(jìn)階課程、合作伙伴賦能課程 初學(xué)者入門課程、開發(fā)者進(jìn)階課程、合作伙伴賦能課程 動(dòng)手實(shí)驗(yàn) 02 動(dòng)手實(shí)驗(yàn)提供初級(jí)、中級(jí)在線實(shí)驗(yàn)學(xué)習(xí) 動(dòng)手實(shí)驗(yàn)提供初級(jí)、中級(jí)在線實(shí)驗(yàn)學(xué)習(xí)來自:專題
端云協(xié)同推理 端云模型協(xié)同,解決網(wǎng)絡(luò)不穩(wěn)的場景,節(jié)省用戶帶寬。 端側(cè)設(shè)備可協(xié)同云側(cè)在線更新模型,快速提升端側(cè)精度。 端側(cè)對采集的數(shù)據(jù)進(jìn)行本地分析,大大減少上云數(shù)據(jù)流量,節(jié)約存儲(chǔ)成本。 2.統(tǒng)一技能開發(fā)平臺(tái) 軟硬協(xié)同優(yōu)化,統(tǒng)一的Skill開發(fā)框架,封裝基礎(chǔ)組件,支持常用深度學(xué)習(xí)模型。 3.跨平臺(tái)設(shè)計(jì)來自:百科
- 基于TensorFlow的深度學(xué)習(xí)模型優(yōu)化策略
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:元學(xué)習(xí)與模型無關(guān)優(yōu)化(MAML)
- 深度學(xué)習(xí)模型優(yōu)化與過擬合抑制-從數(shù)據(jù)增強(qiáng)到正則化的綜合策略
- 深度強(qiáng)化學(xué)習(xí)模型優(yōu)化算法綜述
- 深度學(xué)習(xí)應(yīng)用篇-元學(xué)習(xí)[14]:基于優(yōu)化的元學(xué)習(xí)-MAML模型、LEO模型、Reptile模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:模型監(jiān)控與性能優(yōu)化
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能食品配送優(yōu)化
- 深度學(xué)習(xí)優(yōu)化解密Sora模型的SOTA技術(shù)
- 使用Python實(shí)現(xiàn)智能食品加工優(yōu)化的深度學(xué)習(xí)模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能生產(chǎn)線優(yōu)化