- 深度學(xué)習(xí)比賽預(yù)測(cè) 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)比賽預(yù)測(cè) 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 深度學(xué)習(xí)比賽預(yù)測(cè) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科”區(qū)域,即華為云直播服務(wù)暫只在這些區(qū)域部署了直播中心。新開(kāi)通的用戶,目前暫只支持“華北-北京四”區(qū)域。 購(gòu)買(mǎi) 視頻直播 立即使用 比賽直播在線觀看 比賽直播在線觀看:直播間一起觀看體育賽事、演唱會(huì)等,觀眾實(shí)時(shí)互動(dòng)交流,低時(shí)延共享歡聚時(shí)刻。 事件直播:直播在線觀看高清直播除了黑白名單來(lái)自:專題云知識(shí) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤(pán)異常檢測(cè) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤(pán)異常檢測(cè) 時(shí)間:2021-01-05 11:41:15 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-硬盤(pán)異常檢測(cè)基于網(wǎng)絡(luò)人工智能(NAIE)訓(xùn)練平臺(tái)的硬盤(pán)異常預(yù)測(cè)程序,通過(guò)機(jī)器學(xué)習(xí)構(gòu)建硬盤(pán)故障預(yù)測(cè)模型,對(duì)數(shù)據(jù)中心典型來(lái)自:百科大賽通過(guò)與東風(fēng)暢行實(shí)際業(yè)務(wù)相結(jié)合,為開(kāi)發(fā)者提供一個(gè)交流、學(xué)習(xí),創(chuàng)新挑戰(zhàn)的平臺(tái),以達(dá)到為業(yè)務(wù)賦能、培養(yǎng)汽車(chē)行業(yè)大數(shù)據(jù)人才的目的。 本次大賽參賽者基于華為云人工智能開(kāi)發(fā)平臺(tái)ModelArts,根據(jù)組委會(huì)提供的歷史出行訂單、出行原始軌跡點(diǎn)數(shù)據(jù),進(jìn)行訂單需求預(yù)測(cè)、出行行為分析模型的開(kāi)發(fā)。 大賽詳情地址:https://competition來(lái)自:百科賽者應(yīng)承擔(dān)由此產(chǎn)生的全部責(zé)任及損失。 (3) 數(shù)據(jù)使用:對(duì)于大賽提供的數(shù)據(jù)(數(shù)據(jù)集),參賽者須僅在比賽場(chǎng)景下使用,同時(shí)不得以任何形式使用比賽之外的任何數(shù)據(jù)參賽。對(duì)于不提供下載的比賽數(shù)據(jù),參賽者不得以任何形式擅自復(fù)制、下載或獲取。參賽者如發(fā)現(xiàn)任何出現(xiàn)數(shù)據(jù)未授權(quán)訪問(wèn)的可能,應(yīng)立即通知組委會(huì)并積極提供相關(guān)信息。來(lái)自:百科科研單位、創(chuàng)客團(tuán)隊(duì)等均可報(bào)名參賽。 賽制說(shuō)明 本次大賽分為兩個(gè)階段,學(xué)習(xí)課程階段及長(zhǎng)期刷榜階段。 學(xué)習(xí)課程 報(bào)名比賽后,參賽選手點(diǎn)擊頁(yè)面左側(cè) “學(xué)習(xí)資料” 頁(yè),進(jìn)入課程。找到頁(yè)面【課堂】并點(diǎn)擊,即可開(kāi)啟你的學(xué)習(xí)之旅。 本次課程由華為AI高級(jí)工程師,華為云AI開(kāi)發(fā)者課程設(shè)計(jì)總監(jiān)、導(dǎo)來(lái)自:百科選手在華為線上 AI開(kāi)發(fā)平臺(tái) Modelarts上完成數(shù)據(jù)準(zhǔn)備、訓(xùn)練模型、部署模型,并且發(fā)布成模型服務(wù)預(yù)測(cè)截圖給出預(yù)測(cè)結(jié)果。完成實(shí)驗(yàn)操作并發(fā)布預(yù)測(cè)結(jié)果的選手,將獲得200分附加分。 比賽時(shí)間: 2019年3月13日-2019年4月30日 大賽詳細(xì)地址:https://competition來(lái)自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 預(yù)測(cè)工資——線性回歸
- 深度學(xué)習(xí)—線性回歸預(yù)測(cè)銷(xiāo)售額
- 深度學(xué)習(xí)案例分享 | 房?jī)r(jià)預(yù)測(cè) - PyTorch 實(shí)現(xiàn)
- 使用深度學(xué)習(xí)進(jìn)行油藏預(yù)測(cè)和優(yōu)化
- 使用Python實(shí)現(xiàn)智能食品銷(xiāo)售預(yù)測(cè)的深度學(xué)習(xí)模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能極端天氣事件預(yù)測(cè)
- 深度學(xué)習(xí)模型在油藏儲(chǔ)層預(yù)測(cè)中的應(yīng)用
- 使用Python實(shí)現(xiàn)智能食品價(jià)格預(yù)測(cè)的深度學(xué)習(xí)模型
- 基于深度學(xué)習(xí)的石油煉化設(shè)備故障預(yù)測(cè)與維護(hù)
- 深度學(xué)習(xí)模型在油藏預(yù)測(cè)和優(yōu)化中的應(yīng)用