- 深度學(xué)習(xí)預(yù)測(cè)模型 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)預(yù)測(cè)模型 相關(guān)內(nèi)容
-
來自:百科大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科
- 深度學(xué)習(xí)預(yù)測(cè)模型 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科
、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來自:百科
源,反復(fù)調(diào)整優(yōu)化。 3.訓(xùn)練模型 俗稱“建模”,指通過分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測(cè)、評(píng)價(jià)等結(jié)果。 業(yè)界主流的A來自:百科
支持行業(yè)客戶二次訓(xùn)練專屬模型,打造大模型體驗(yàn)。 盤古預(yù)測(cè)大模型產(chǎn)品功能 回歸預(yù)測(cè) 用于連續(xù)值預(yù)測(cè),可自動(dòng)進(jìn)行任務(wù)理解,分析選擇最適合的回歸模型集合,并融合多個(gè)模型來提升回歸預(yù)測(cè)精度 分類預(yù)測(cè) 用于離散值的預(yù)測(cè),如:不同類別或標(biāo)簽;基于任務(wù)理解和模型選擇推薦能力,可自動(dòng)選擇多個(gè)分類模型并基于動(dòng)態(tài)圖算法進(jìn)行融合,來提升預(yù)測(cè)性能來自:專題
ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡(jiǎn)介 ModelArts模型訓(xùn)練,俗稱“建模”,指通過分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測(cè)、評(píng)價(jià)等結(jié)果。來自:專題
多種算法內(nèi)置 基于已有時(shí)間序列算法,對(duì)產(chǎn)品缺陷進(jìn)行預(yù)測(cè),挖掘須重點(diǎn)關(guān)注質(zhì)量的產(chǎn)品 專業(yè) 數(shù)據(jù)倉(cāng)庫(kù) 專業(yè)數(shù)倉(cāng)支持設(shè)計(jì)應(yīng)用多維分析,快速響應(yīng) 智能設(shè)備維護(hù) 預(yù)測(cè)性維護(hù),根據(jù)系統(tǒng)過去和現(xiàn)在的狀態(tài),采用時(shí)間序列預(yù)測(cè)、神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)和回歸分析等預(yù)測(cè)推理方法,預(yù)測(cè)系統(tǒng)將來是否會(huì)發(fā)生故障,何時(shí)發(fā)生故障,發(fā)生來自:百科
AI賦能的應(yīng)用運(yùn)行平臺(tái),不僅僅是托管應(yīng)用程序,而且能夠主動(dòng)學(xué)習(xí)、預(yù)測(cè)并適應(yīng)業(yè)務(wù)需求。 自適應(yīng)調(diào)優(yōu):AI模型會(huì)分析行業(yè)知識(shí)庫(kù)、應(yīng)用架構(gòu)和基礎(chǔ)設(shè)施配置,自動(dòng)適配各種業(yè)務(wù)場(chǎng)景。面對(duì)月結(jié)或交易結(jié)算這樣的周期性高峰,AI模型會(huì)預(yù)測(cè)并調(diào)整系統(tǒng)部署,應(yīng)對(duì)峰值壓力。 智能彈性:AI模型會(huì)實(shí)時(shí)監(jiān)控流量變化和運(yùn)行指標(biāo),智能來自:百科
通過系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書。 通過系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書。 服務(wù)咨詢來自:專題
- 使用Python實(shí)現(xiàn)智能食品銷售預(yù)測(cè)的深度學(xué)習(xí)模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能極端天氣事件預(yù)測(cè)
- 深度學(xué)習(xí)模型在油藏儲(chǔ)層預(yù)測(cè)中的應(yīng)用
- 使用Python實(shí)現(xiàn)智能食品價(jià)格預(yù)測(cè)的深度學(xué)習(xí)模型
- 利用Mindspore 深度學(xué)習(xí)框架和LSTM實(shí)現(xiàn)股票預(yù)測(cè)模型
- 深度學(xué)習(xí)模型在油藏預(yù)測(cè)和優(yōu)化中的應(yīng)用
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能天氣預(yù)測(cè)與氣候分析
- 使用Python實(shí)現(xiàn)智能食品消費(fèi)習(xí)慣預(yù)測(cè)的深度學(xué)習(xí)模型
- 使用Python實(shí)現(xiàn)智能食品消費(fèi)模式預(yù)測(cè)的深度學(xué)習(xí)模型
- 使用Python實(shí)現(xiàn)智能食品消費(fèi)趨勢(shì)預(yù)測(cè)的深度學(xué)習(xí)模型