- 具體模型可解釋機(jī)器學(xué)習(xí) 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類(lèi) 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹(shù) 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來(lái)自:百科
- 具體模型可解釋機(jī)器學(xué)習(xí) 相關(guān)內(nèi)容
-
練為例,一個(gè)代表工作是百度的ERNIE 3.0將圖譜三元組轉(zhuǎn)換成一段token文本作為輸入,并遮蓋其實(shí)體或者關(guān)系來(lái)進(jìn)行預(yù)訓(xùn)練,使模型在預(yù)訓(xùn)練階段直接學(xué)習(xí)KG蘊(yùn)含的知識(shí)。 第二種融合路線(xiàn)是LLM增強(qiáng)KG。LLM可用于KG構(gòu)建、KG embedding、KG補(bǔ)全、基于KG的文本生成、來(lái)自:百科來(lái)自:百科
- 具體模型可解釋機(jī)器學(xué)習(xí) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) CDN 緩存具體指的是什么? CDN緩存具體指的是什么? 時(shí)間:2022-05-30 17:56:06 【CDN618預(yù)熱抽獎(jiǎng)】 當(dāng)用戶(hù)訪(fǎng)問(wèn)一個(gè)網(wǎng)站時(shí),客戶(hù)端直接從源站點(diǎn)獲取數(shù)據(jù),當(dāng)服務(wù)器訪(fǎng)問(wèn)量大時(shí)會(huì)影響訪(fǎng)問(wèn)速度,影響用戶(hù)體驗(yàn),且無(wú)法保證客戶(hù)端與源站點(diǎn)間的距離足來(lái)自:百科ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡(jiǎn)介 ModelArts模型訓(xùn)練,俗稱(chēng)“建模”,指通過(guò)分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測(cè)、評(píng)價(jià)等結(jié)果。來(lái)自:專(zhuān)題云知識(shí) 根集合(root set)具體包含什么? 根集合(root set)具體包含什么? 時(shí)間:2021-03-09 17:27:08 AI開(kāi)發(fā)平臺(tái) 人工智能 開(kāi)發(fā)語(yǔ)言環(huán)境 根集合中的引用可以被應(yīng)用程序直接訪(fǎng)問(wèn),因此根指向的對(duì)象都是活的。 具體包括:局部變量、靜態(tài)(全局)變量、來(lái)自:百科術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn); 3. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法原理創(chuàng)新; 4. 面向鯤鵬的算法親和優(yōu)化實(shí)踐; 5. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法實(shí)踐。 聽(tīng)眾收益:來(lái)自:百科。說(shuō)明如下: 注:具體定義幾個(gè)服務(wù)是非常靈活的,如上面的例子可以將告警服務(wù)拆分成水壓告警服務(wù)和流量告警服務(wù),也可以將告警服務(wù)合入到水表基礎(chǔ)服務(wù)中。 華為云產(chǎn)品 華為云產(chǎn)品體系為客戶(hù)提供云計(jì)算、云存儲(chǔ)、云網(wǎng)絡(luò)、 云安全 、 云數(shù)據(jù)庫(kù) 、云管理與部署應(yīng)用等IT基礎(chǔ)設(shè)施云服務(wù),支撐您的各類(lèi)上云業(yè)務(wù)場(chǎng)景,祝您輕松應(yīng)對(duì)智能時(shí)代挑戰(zhàn)來(lái)自:百科基于先進(jìn)的Transformer架構(gòu)對(duì)算法模型進(jìn)行深度優(yōu)化,機(jī)器翻譯效果和速度業(yè)界領(lǐng)先 數(shù)據(jù)支持 專(zhuān)業(yè)譯員團(tuán)隊(duì)支撐模型訓(xùn)練,20年積累的高質(zhì)量翻譯語(yǔ)料庫(kù) 穩(wěn)定可靠 基于企業(yè)級(jí)客戶(hù)實(shí)踐,經(jīng)受復(fù)雜場(chǎng)景考驗(yàn),華為云機(jī)器翻譯服務(wù)已在多個(gè)場(chǎng)景中成功應(yīng)用 獨(dú)創(chuàng)技術(shù) 通過(guò)混合網(wǎng)絡(luò)結(jié)構(gòu)、受限解碼、實(shí)時(shí)神經(jīng)翻譯等技術(shù),大幅提升翻譯質(zhì)量來(lái)自:百科數(shù)據(jù)庫(kù)概念模型實(shí)際上是現(xiàn)實(shí)世界到機(jī)器世界的一個(gè)中間層次。數(shù)據(jù)庫(kù)概念模型用于信息世界的建模,是現(xiàn)實(shí)世界到信息世界的第一層抽象,是數(shù)據(jù)庫(kù)設(shè)計(jì)人員進(jìn)行數(shù)據(jù)庫(kù)設(shè)計(jì)的有力工具,也是數(shù)據(jù)庫(kù)設(shè)計(jì)人員和用戶(hù)之間進(jìn)行交流的語(yǔ)言。建立數(shù)據(jù)概念模型,就是從數(shù)據(jù)的觀點(diǎn)出發(fā),觀察系統(tǒng)中數(shù)據(jù)的采集、傳輸、處理、存儲(chǔ)、輸出等,經(jīng)過(guò)分析、總來(lái)自:百科非結(jié)構(gòu)化數(shù)據(jù)的深度學(xué)習(xí)模型開(kāi)發(fā)、訓(xùn)練、評(píng)估和發(fā)布,支持多種計(jì)算資源進(jìn)行模型開(kāi)發(fā)與訓(xùn)練,以及超參調(diào)優(yōu)、模型可視化工具等功能。數(shù)據(jù)標(biāo)注平臺(tái)提供高效率的獨(dú)立的數(shù)據(jù)標(biāo)注功能,支持多類(lèi)型應(yīng)用場(chǎng)景、多人標(biāo)注、自動(dòng)標(biāo)注和批量標(biāo)注。模型工廠是模型的管理中心,支持模型入庫(kù)、模型上傳、格式轉(zhuǎn)換、版本來(lái)自:專(zhuān)題GaussDB 是什么-性能白皮書(shū) 立即下載 GaussDB是什么-常見(jiàn)問(wèn)題 立即下載 GaussDB數(shù)據(jù)庫(kù) 模型精選文章推薦 GaussDB入門(mén) _國(guó)產(chǎn)數(shù)據(jù)庫(kù)_高斯數(shù)據(jù)庫(kù)入門(mén) GaussDB學(xué)習(xí)_gaussdb教程_高斯數(shù)據(jù)庫(kù)學(xué)習(xí) 免費(fèi)gaussdb數(shù)據(jù)庫(kù)_華為gaussdb數(shù)據(jù)庫(kù)_mysql免費(fèi)數(shù)據(jù)庫(kù) 免費(fèi)的MySQL數(shù)據(jù)庫(kù)來(lái)自:專(zhuān)題從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng)機(jī)器翻譯、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 【Datawhale可解釋性機(jī)器學(xué)習(xí)筆記】ZFNET
- 【Datawhale可解釋性機(jī)器學(xué)習(xí)筆記】預(yù)備知識(shí)學(xué)習(xí)
- 【Datawhale可解釋性機(jī)器學(xué)習(xí)筆記】CAM
- 【Datawhale可解釋性機(jī)器學(xué)習(xí)筆記】CAM
- 收藏 | 可解釋機(jī)器學(xué)習(xí)發(fā)展和常見(jiàn)方法!
- 【機(jī)器學(xué)習(xí)基礎(chǔ)】常用機(jī)器學(xué)習(xí)模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:模型解釋與可解釋人工智能
- 機(jī)器學(xué)習(xí)——模型保存
- 《打破黑箱:深度學(xué)習(xí)模型可解釋性的攻堅(jiān)之路》
- 機(jī)器學(xué)習(xí)(七):Azure機(jī)器學(xué)習(xí)模型搭建實(shí)驗(yàn)