- 基于深度學(xué)習(xí)的物體識(shí)別研究 內(nèi)容精選 換一換
-
提供根據(jù)場(chǎng)景進(jìn)行的算法定制服務(wù)。 商品鏈接:<<人員倒地檢測(cè)>> 相關(guān)商品: <<人員聚集檢測(cè)>> <<人員打架檢測(cè)>> 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作來(lái)自:云商店Computing)技術(shù)的發(fā)展已經(jīng)成為當(dāng)今科技領(lǐng)域的熱點(diǎn)之一。AIGC技術(shù)的發(fā)展可以追溯到人工智能和圖形計(jì)算兩個(gè)領(lǐng)域的發(fā)展歷程。人工智能技術(shù)的興起,使得計(jì)算機(jī)能夠模擬人類的智能行為,而圖形計(jì)算技術(shù)的進(jìn)步,則賦予了計(jì)算機(jī)處理視覺(jué)信息的能力。這兩者的結(jié)合,為AIGC技術(shù)的誕生提供了堅(jiān)實(shí)的基礎(chǔ)。 如來(lái)自:百科
- 基于深度學(xué)習(xí)的物體識(shí)別研究 相關(guān)內(nèi)容
-
制化開(kāi)發(fā),讓我可以根據(jù)客戶的需求和場(chǎng)景進(jìn)行個(gè)性化的配置和優(yōu)化。 通過(guò)使用華為云通用AI解決方案,我為我的客戶提供了更高效、更智能、更安全的服務(wù),并且節(jié)省了大量的開(kāi)發(fā)時(shí)間和成本。我的客戶也非常滿意我的服務(wù),并且給我?guī)?lái)了更多的訂單和推薦。 讓我舉一個(gè)具體的例子吧。有一次我為一家快遞來(lái)自:百科而不需要關(guān)心底層的技術(shù)。同時(shí),ModelArts支持Tensorflow、MXNet等主流開(kāi)源的AI開(kāi)發(fā)框架,也支持開(kāi)發(fā)者使用自研的算法框架,匹配您的使用習(xí)慣。 ModelArts的理念就是讓AI開(kāi)發(fā)變得更簡(jiǎn)單、更方便。 面向不同經(jīng)驗(yàn)的AI開(kāi)發(fā)者,提供便捷易用的使用流程。例如,面來(lái)自:百科
- 基于深度學(xué)習(xí)的物體識(shí)別研究 更多內(nèi)容
-
0結(jié)合部署的方式,聯(lián)合300多臺(tái)攝像機(jī),支持園區(qū)周界安全、車輛檢索等智能識(shí)別分析,實(shí)現(xiàn)面向園區(qū)安防監(jiān)控、車輛信息的一體化綜合園區(qū)管理解決方案。 AI算法的應(yīng)用 針對(duì)高空拋物問(wèn)題,云智銀河聯(lián)合博思廷,結(jié)合華為好望攝像機(jī)和NVR,推出了高空拋物解決方案??梢詮?span style='color:#C7000B'>物體開(kāi)始?jí)嬄?span style='color:#C7000B'>的第一個(gè)點(diǎn)確來(lái)自:云商店為什么 錄音轉(zhuǎn)文字 出現(xiàn)重復(fù)轉(zhuǎn)寫結(jié)果? 調(diào)用錄音文件識(shí)別接口,識(shí)別的結(jié)果出現(xiàn)兩條完全一致的結(jié)果。由于聲道設(shè)置的原因,單身道的音頻按照雙聲道處理了。在請(qǐng)求中將參數(shù)“channel”的值修改成“MONO”或者直接去掉請(qǐng)求參數(shù)中的“channel”項(xiàng)。 錄音轉(zhuǎn)文字多久可以返回結(jié)果? 音頻轉(zhuǎn)寫時(shí)長(zhǎng)受音頻時(shí)長(zhǎng)和排隊(duì)任務(wù)數(shù)量影響來(lái)自:專題本課程為AI全棧成長(zhǎng)計(jì)劃第二階段課程:AI進(jìn)階篇。本階段將由華為AI專家?guī)?span style='color:#C7000B'>學(xué)習(xí)AI開(kāi)發(fā)兩大熱門領(lǐng)域:圖像分類和物體檢測(cè)的模型開(kāi)發(fā),正式入門AI代碼開(kāi)發(fā)! 目標(biāo)學(xué)員 高校學(xué)生、個(gè)人開(kāi)發(fā)者中的AI愛(ài)好者、學(xué)習(xí)者 課程目標(biāo) 了解、掌握 AI 開(kāi)發(fā)的基本流程,完成常見(jiàn) AI 模型的開(kāi)發(fā)部署。 課程大綱 第1章 全流程 AI開(kāi)發(fā)平臺(tái) 介紹-ModelArts來(lái)自:百科0系列課程。計(jì)算機(jī)視覺(jué)是深度學(xué)習(xí)領(lǐng)域最熱門的研究領(lǐng)域之一,它衍生出了一大批快速發(fā)展且具有實(shí)際作用的應(yīng)用,包括人臉識(shí)別、圖像檢測(cè)、目標(biāo)監(jiān)測(cè)以及智能駕駛等。這一切本質(zhì)都是對(duì)圖像數(shù)據(jù)進(jìn)行處理,本課程就圖像處理理論及相應(yīng)技術(shù)做了介紹,包括傳統(tǒng)特征提取算法和卷積神經(jīng)網(wǎng)絡(luò),學(xué)習(xí)時(shí)注意兩者的區(qū)別。 目標(biāo)學(xué)員來(lái)自:百科進(jìn)行學(xué)習(xí)。對(duì)于不成功的圖片,我們進(jìn)一步使用 OCR 。OCR能夠識(shí)別出圖像中的文字內(nèi)容及其位置。結(jié)合第一階段的目標(biāo)識(shí)別模型進(jìn)行結(jié)果融合,可以得到更為精確的可點(diǎn)擊區(qū)域結(jié)果,并且這個(gè)時(shí)候的融合方案已經(jīng)初步可以使用了。隨著數(shù)據(jù)集的積累,目標(biāo)檢測(cè)模型的檢測(cè)結(jié)果也變得更精確。最終能夠只使用目標(biāo)識(shí)別方案。來(lái)自:百科方法和深度學(xué)習(xí)方法完成計(jì)算機(jī)視覺(jué)任務(wù)的方法以及應(yīng)用場(chǎng)景。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握數(shù)字圖像的基礎(chǔ)知識(shí)和變換方法。 2、掌握?qǐng)D像分類技術(shù)的原理和應(yīng)用場(chǎng)景。 3、掌握目標(biāo)檢測(cè)技術(shù)的原理和應(yīng)用場(chǎng)景。 4、掌握?qǐng)D像分割技術(shù)的原理和應(yīng)用場(chǎng)景。 5、掌握視頻處理的技術(shù)原理和應(yīng)用場(chǎng)景。來(lái)自:百科基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 處理速度快 基于大規(guī)模GPU集群,快速識(shí)別敏感信息 網(wǎng)站論壇 不合規(guī)圖片的識(shí)別和處理是用戶原創(chuàng)內(nèi)容(UGC)類網(wǎng)站的重點(diǎn)工作,基于 內(nèi)容審核 ,可以識(shí)別并預(yù)警用戶上傳的不合規(guī)圖片,幫助客戶快速定位處理,降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn) 優(yōu)勢(shì) 準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 處理速度快來(lái)自:百科Health)平臺(tái)是基于華為云AI和大數(shù)據(jù)技術(shù)優(yōu)勢(shì),為基因組分析、藥物研發(fā)和醫(yī)療影像三個(gè)領(lǐng)域提供的專業(yè)AI研發(fā)平臺(tái)。 產(chǎn)品優(yōu)勢(shì) 提供開(kāi)放的、易于擴(kuò)展的平臺(tái)架構(gòu)。 提供端到端的AI賦能平臺(tái)加速AI的研發(fā)和應(yīng)用。 提供針對(duì)醫(yī)療行業(yè)的AI自動(dòng)建模工具。 提供醫(yī)療領(lǐng)域?qū)I(yè)的預(yù)置資產(chǎn),提升企業(yè)的效率。來(lái)自:百科nx服務(wù)的容器服務(wù)部署,并進(jìn)行驗(yàn)證。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過(guò)本手冊(cè)用戶將了解到: 1)整個(gè)K8S系統(tǒng)的安裝和配置 2)通過(guò)管理計(jì)算節(jié)點(diǎn),創(chuàng)建特定功能的容服務(wù) 3)基本K8S命令,管理計(jì)算節(jié)點(diǎn)的容器服務(wù) 4)容器的網(wǎng)絡(luò)配置,完成服務(wù)功能性驗(yàn)證 實(shí)驗(yàn)摘要 1. 實(shí)驗(yàn)環(huán)境準(zhǔn)備 2. 配置開(kāi)發(fā)環(huán)境來(lái)自:百科
- 基于深度學(xué)習(xí)的人類行為識(shí)別算法研究
- 基于深度學(xué)習(xí)的行人重識(shí)別研究綜述 羅浩.ZJU
- 基于深度學(xué)習(xí)的人類活動(dòng)識(shí)別模型研究:HAR-DeepConvLG的設(shè)計(jì)與應(yīng)用
- 基于深度學(xué)習(xí)的油藏?cái)?shù)據(jù)分類與識(shí)別
- 基于深度學(xué)習(xí)的性別識(shí)別算法matlab仿真
- 基于機(jī)器學(xué)習(xí)的地震測(cè)井?dāng)?shù)據(jù)分類與識(shí)別算法研究
- 基于深度學(xué)習(xí)的鳥(niǎo)類識(shí)別系統(tǒng)matlab仿真
- 基于深度學(xué)習(xí)的海洋魚類識(shí)別算法matlab仿真
- 深度學(xué)習(xí) - 深度學(xué)習(xí) (人工神經(jīng)網(wǎng)絡(luò)的研究的概念)
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的鞋子種類識(shí)別matlab仿真