- 機(jī)器學(xué)習(xí)時(shí)間序列數(shù)據(jù)窗口期 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來(lái)自:百科
- 機(jī)器學(xué)習(xí)時(shí)間序列數(shù)據(jù)窗口期 相關(guān)內(nèi)容
-
BoostKit大數(shù)據(jù)使能套件:Spark機(jī)器學(xué)習(xí)算法,實(shí)現(xiàn)數(shù)據(jù)處理倍級(jí)性能提升 BoostKit大數(shù)據(jù)使能套件:Spark機(jī)器學(xué)習(xí)算法,實(shí)現(xiàn)數(shù)據(jù)處理倍級(jí)性能提升 時(shí)間:2021-04-27 15:10:34 內(nèi)容簡(jiǎn)介: 隨著大數(shù)據(jù)爆炸式的增長(zhǎng),應(yīng)用大規(guī)模數(shù)據(jù)處理系統(tǒng)分析大數(shù)據(jù)變得越來(lái)越來(lái)自:百科
- 機(jī)器學(xué)習(xí)時(shí)間序列數(shù)據(jù)窗口期 更多內(nèi)容
-
一致,數(shù)據(jù)0丟失, GaussDB 獲取時(shí)間是什么? 幫助文檔 云數(shù)據(jù)庫(kù)GaussDB時(shí)間/日期類型 時(shí)間/日期類型 GaussDB支持的日期/時(shí)間類型請(qǐng)參見表1。該類型的操作符和內(nèi)置函數(shù)請(qǐng)參見時(shí)間和日期處理函數(shù)和操作符。 說明:如果其他的數(shù)據(jù)庫(kù)時(shí)間格式和GaussDB的時(shí)間格式不一來(lái)自:專題華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 時(shí)間:2020-12-16 09:52:25 云計(jì)算是未來(lái)的方向,云數(shù)據(jù)庫(kù)是解決方案的核心,學(xué)習(xí)本課程掌握華為云數(shù)據(jù)庫(kù)的運(yùn)維管理,數(shù)據(jù)庫(kù)遷移和根據(jù)業(yè)務(wù)場(chǎng)景出具解決方案的能力。 課程簡(jiǎn)介 課程覆蓋了華為云對(duì)各行業(yè)解決方案、數(shù)據(jù)庫(kù)遷移方案和來(lái)自:百科學(xué)習(xí)云數(shù)據(jù)庫(kù)GaussDB 學(xué)習(xí)云數(shù)據(jù)庫(kù)GaussDB 云數(shù)據(jù)庫(kù)GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù),具有高性能、高可用、高安全、低成本的特點(diǎn),企業(yè)核心數(shù)據(jù)上云信賴之選。如何快速學(xué)習(xí)和了解GaussDB呢? 云數(shù)據(jù)庫(kù)GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)來(lái)自:專題析、維修記錄、售后歷史數(shù)據(jù),進(jìn)行分類分析,發(fā)現(xiàn)產(chǎn)品關(guān)鍵問題,指導(dǎo)新產(chǎn)品設(shè)計(jì)改善,提升產(chǎn)品質(zhì)量 優(yōu)勢(shì) 多數(shù)據(jù)源集成 針對(duì)多種數(shù)據(jù)源提供統(tǒng)一數(shù)據(jù)探索,快速發(fā)現(xiàn)有價(jià)值數(shù)據(jù) 多種算法內(nèi)置 基于已有時(shí)間序列算法,對(duì)產(chǎn)品缺陷進(jìn)行預(yù)測(cè),挖掘須重點(diǎn)關(guān)注質(zhì)量的產(chǎn)品 專業(yè)數(shù)據(jù)倉(cāng)庫(kù) 專業(yè)數(shù)倉(cāng)支持設(shè)計(jì)應(yīng)用多維分析,快速響應(yīng)來(lái)自:百科遷移實(shí)施的關(guān)鍵指標(biāo): 業(yè)務(wù)中斷時(shí)間 下圖主要從離線遷移和在線遷移的對(duì)比上相對(duì)形象的做了遷移過程中,業(yè)務(wù)流程及業(yè)務(wù)停機(jī)時(shí)間的展示。 停機(jī)時(shí)間 = 最后一次數(shù)據(jù)增量同步時(shí)間 + 業(yè)務(wù)切換時(shí)間 業(yè)務(wù)切換:選在業(yè)務(wù)量最低時(shí)進(jìn)行,最大幅度降低業(yè)務(wù)切換對(duì)用戶感受的影響 學(xué)習(xí)了解更多可前往查看云學(xué)院《云遷移基礎(chǔ)》課程。來(lái)自:百科大數(shù)據(jù)分析學(xué)習(xí)與微認(rèn)證 通過系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書。 大數(shù)據(jù)分析學(xué)習(xí)課程與認(rèn)證 課程結(jié)合實(shí)踐,借助配套的實(shí)驗(yàn)環(huán)境,一站式學(xué)練考,輕松Get新知識(shí) 【初級(jí)】球星薪酬決定性因素分析來(lái)自:專題大數(shù)據(jù)分析學(xué)習(xí)與微認(rèn)證 通過系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書。 大數(shù)據(jù)分析學(xué)習(xí)課程與認(rèn)證 課程結(jié)合實(shí)踐,借助配套的實(shí)驗(yàn)環(huán)境,一站式學(xué)練考,輕松Get新知識(shí) 隨著大數(shù)據(jù)、云計(jì)算的發(fā)展,來(lái)自:專題華為云計(jì)算 云知識(shí) 零門檻入門數(shù)據(jù)庫(kù)學(xué)習(xí) 零門檻入門數(shù)據(jù)庫(kù)學(xué)習(xí) 時(shí)間:2020-11-23 16:42:27 數(shù)據(jù)庫(kù)是計(jì)算機(jī)科學(xué)中發(fā)展久遠(yuǎn)的一門技術(shù)。從上世紀(jì)60年代初誕生至今為止,已經(jīng)將近60年。從早期單純的對(duì)數(shù)據(jù)文件的保存和處理,發(fā)展出以數(shù)據(jù)建模和數(shù)據(jù)庫(kù)管理系統(tǒng)為核心技術(shù)的一門內(nèi)來(lái)自:百科從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng)機(jī)器翻譯、即時(shí)視覺翻譯、刷臉支付、人臉考勤……不知不覺,深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 機(jī)器學(xué)習(xí)與時(shí)間序列數(shù)據(jù)分析:預(yù)測(cè)與趨勢(shì)分析
- 《scikit-learn機(jī)器學(xué)習(xí)常用算法原理及編程實(shí)戰(zhàn)》—2.4.4 時(shí)間序列
- 數(shù)據(jù)分析時(shí)間序列
- 探索XGBoost:時(shí)間序列數(shù)據(jù)建模
- Pandas數(shù)據(jù)應(yīng)用:時(shí)間序列預(yù)測(cè)
- 如何用Python處理時(shí)間序列大數(shù)據(jù)
- 數(shù)據(jù)分析實(shí)戰(zhàn)│時(shí)間序列預(yù)測(cè)
- Pandas中級(jí)教程——時(shí)間序列數(shù)據(jù)處理
- 時(shí)間序列預(yù)測(cè)模型
- 機(jī)器學(xué)習(xí)(五):數(shù)據(jù)縮放