- 機(jī)器學(xué)習(xí)-矩陣向量求導(dǎo) 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹(shù) 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來(lái)自:百科
- 機(jī)器學(xué)習(xí)-矩陣向量求導(dǎo) 相關(guān)內(nèi)容
-
本文介紹了【機(jī)器學(xué)習(xí)中的矩陣向量求導(dǎo)(三) 矩陣向量求導(dǎo)之微分法】相關(guān)內(nèi)容,與您搜索的機(jī)器學(xué)習(xí)-矩陣向量求導(dǎo)相關(guān),助力開(kāi)發(fā)者獲取技術(shù)信息和云計(jì)算技術(shù)生態(tài)圈動(dòng)態(tài)...請(qǐng)點(diǎn)擊查閱更多詳情。來(lái)自:其他本文介紹了【機(jī)器學(xué)習(xí)中的矩陣向量求導(dǎo)(二) 矩陣向量求導(dǎo)之定義法】相關(guān)內(nèi)容,與您搜索的機(jī)器學(xué)習(xí)-矩陣向量求導(dǎo)相關(guān),助力開(kāi)發(fā)者獲取技術(shù)信息和云計(jì)算技術(shù)生態(tài)圈動(dòng)態(tài)...請(qǐng)點(diǎn)擊查閱更多詳情。來(lái)自:其他
- 機(jī)器學(xué)習(xí)-矩陣向量求導(dǎo) 更多內(nèi)容
-
術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn); 3. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法原理創(chuàng)新; 4. 面向鯤鵬的算法親和優(yōu)化實(shí)踐; 5. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法實(shí)踐。 聽(tīng)眾收益:來(lái)自:百科
從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng)機(jī)器翻譯、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
效率和便捷性。 提高教學(xué)效率 RPA教學(xué)管理云平臺(tái)的深度集成華為數(shù)字機(jī)器人方案,為高校師生提供了高效、便捷、靈活、動(dòng)態(tài)的數(shù)字機(jī)器人理論學(xué)習(xí)與實(shí)驗(yàn)實(shí)訓(xùn)教學(xué)服務(wù)。通過(guò)該平臺(tái),教師可以上傳課程資源,學(xué)生可以按順序學(xué)習(xí),并參與模擬考試。同時(shí),教師還可以發(fā)布實(shí)訓(xùn)任務(wù),學(xué)生提交實(shí)訓(xùn)結(jié)果后,教來(lái)自:專題
圖像搜索 ( Image Search )基于深度學(xué)習(xí)與 圖像識(shí)別 技術(shù),結(jié)合不同應(yīng)用業(yè)務(wù)和行業(yè)場(chǎng)景,利用特征向量化與搜索能力,幫助您從指定圖庫(kù)中搜索相同或相似的圖片。 圖像搜索服務(wù)以開(kāi)放API(Application Programming Interface,應(yīng)用程序編程接口)的方式提供給來(lái)自:百科
隊(duì)分享了基于華為機(jī)器視覺(jué)產(chǎn)品(軟件定義攝像機(jī)、智能視頻存儲(chǔ)、華為好望商城、華為好望云服務(wù))結(jié)合各自賽隊(duì)優(yōu)秀算法和應(yīng)用的聯(lián)合方案及優(yōu)秀實(shí)踐。 華為機(jī)器視覺(jué)總裁 段愛(ài)國(guó) 致辭 經(jīng)過(guò)激烈的角逐,最終大賽決出1個(gè)金獎(jiǎng)、2個(gè)銀獎(jiǎng)、8個(gè)優(yōu)勝獎(jiǎng),華為機(jī)器視覺(jué)總裁段愛(ài)國(guó)、華為機(jī)器視覺(jué)負(fù)責(zé)產(chǎn)業(yè)發(fā)展來(lái)自:云商店
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 機(jī)器學(xué)習(xí)中的矩陣向量求導(dǎo)(三) 矩陣向量求導(dǎo)之微分法
- 機(jī)器學(xué)習(xí)中的矩陣向量求導(dǎo)(二) 矩陣向量求導(dǎo)之定義法
- 機(jī)器學(xué)習(xí)中的矩陣向量求導(dǎo)(五) 矩陣對(duì)矩陣的求導(dǎo)
- 機(jī)器學(xué)習(xí)中的矩陣向量求導(dǎo)(四) 矩陣向量求導(dǎo)鏈?zhǔn)椒▌t
- 【機(jī)器學(xué)習(xí)中的矩陣求導(dǎo)】(五)矩陣對(duì)矩陣求導(dǎo)
- 【機(jī)器學(xué)習(xí)中的矩陣求導(dǎo)】(一)求導(dǎo)布局
- 【機(jī)器學(xué)習(xí)中的矩陣求導(dǎo)】(八)標(biāo)量函數(shù)f(x)的雅克比矩陣(跡函數(shù))
- 【機(jī)器學(xué)習(xí)|數(shù)學(xué)基礎(chǔ)】Mathematics for Machine Learning系列之矩陣?yán)碚摚?6):向量和矩陣的極限
- 【機(jī)器學(xué)習(xí)】向量化計(jì)算 -- 機(jī)器學(xué)習(xí)路上必經(jīng)路
- 深度學(xué)習(xí)的數(shù)學(xué) —— 矩陣乘向量及其特性