- tensorflow神經(jīng)網(wǎng)絡(luò) 內(nèi)容精選 換一換
-
GPU卡,每臺(tái)云服務(wù)器支持最大8張Tesla V100顯卡。 支持NVIDIA CUDA 并行計(jì)算,支持常見(jiàn)的深度學(xué)習(xí)框架Tensorflow、Caffe、PyTorch、MXNet等。 單精度能力15.7 TFLOPS,雙精度能力7.8 TFLOPS。 支持NVIDIA Tensor Co來(lái)自:百科本實(shí)驗(yàn)指導(dǎo)用戶在華為云ModelArts平臺(tái)對(duì)預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建 人臉識(shí)別 應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 掌握MXNet AI引擎用法; 掌握基于MXNet構(gòu)建人臉識(shí)別神經(jīng)網(wǎng)絡(luò); 掌握華為云ModelArts SDK創(chuàng)建訓(xùn)練作業(yè)、模型部署和模型測(cè)試; 掌握ModelArts自研分布式訓(xùn)練框架MoXing。來(lái)自:百科
- tensorflow神經(jīng)網(wǎng)絡(luò) 相關(guān)內(nèi)容
-
模型訓(xùn)練與平臺(tái)部署(Mindspore-TF) 時(shí)間:2020-12-08 16:37:45 本課程主要介紹如何讓TensorFlow腳本運(yùn)行在昇騰910處理器上,并進(jìn)行精度、性能等方面的調(diào)優(yōu)。 目標(biāo)學(xué)員 AI領(lǐng)域的開發(fā)者 課程目標(biāo) 通過(guò)對(duì)教材的解讀,使學(xué)員能夠結(jié)合教材+實(shí)踐,遷移自己的訓(xùn)練腳本到昇騰平臺(tái)上進(jìn)行訓(xùn)練。來(lái)自:百科來(lái)自:百科
- tensorflow神經(jīng)網(wǎng)絡(luò) 更多內(nèi)容
-
模型包規(guī)范 ModelArts在AI應(yīng)用管理創(chuàng)建AI應(yīng)用時(shí),如果是從 OBS 中導(dǎo)入元模型,則需要符合一定的模型包規(guī)范。模型包規(guī)范適用于單模型場(chǎng)景,若是多模型場(chǎng)景(例如含有多個(gè)模型文件)推薦使用自定義鏡像方式。 ModelArts在AI應(yīng)用管理創(chuàng)建AI應(yīng)用時(shí),如果是從OBS中導(dǎo)入元模來(lái)自:專題DL)是機(jī)器學(xué)習(xí)的一種,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的必由之路。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個(gè)隱藏層的多層感知器就是深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過(guò)組合低層特征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。來(lái)自:百科課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見(jiàn)的問(wèn)題。 課程大綱 1. 深度學(xué)習(xí)簡(jiǎn)介 2. 訓(xùn)練法則 3. 激活函數(shù) 4. 正則化 5. 優(yōu)化器 6. 神經(jīng)網(wǎng)絡(luò)類型 7. 常見(jiàn)問(wèn)題 華為云 面來(lái)自:百科6、經(jīng)過(guò)一系列的預(yù)處理后的圖像數(shù)據(jù)有以下兩種處理方式: -圖像數(shù)據(jù)可以根據(jù)模型要求經(jīng)過(guò)AIPP進(jìn)行進(jìn)一步預(yù)處理(可選,若DVPP輸出的數(shù)據(jù)滿足圖像要求,則可以不經(jīng)過(guò)AIPP的處理),然后將滿足要求的圖像數(shù)據(jù)在AI CPU的控制下進(jìn)入AI Core進(jìn)行所需的神經(jīng)網(wǎng)絡(luò)計(jì)算。 -將輸出的圖像數(shù)據(jù)統(tǒng)一通過(guò)JPEG編碼模塊進(jìn)來(lái)自:百科功能,均可以通過(guò)web界面由用戶自助進(jìn)行操作。 支持VPC 支持通過(guò)VPC內(nèi)的私有網(wǎng)絡(luò),與E CS 之間內(nèi)網(wǎng)互通; 易用性 支持TensorFlow、Caffe等流行框架 支持k8s/Swarm,使用戶能夠非常簡(jiǎn)便的搭建、管理計(jì)算集群。 未來(lái)支持主流框架鏡像、集群自動(dòng)化發(fā)放 存儲(chǔ) 支來(lái)自:百科華為云計(jì)算 云知識(shí) 網(wǎng)絡(luò)智能體NAIE應(yīng)用場(chǎng)景 網(wǎng)絡(luò)智能體NAIE應(yīng)用場(chǎng)景 時(shí)間:2020-09-15 14:41:32 網(wǎng)絡(luò)智能體(Network AI Engine,NAIE)將AI引入網(wǎng)絡(luò)領(lǐng)域,解決網(wǎng)絡(luò)業(yè)務(wù)預(yù)測(cè)類、重復(fù)性、復(fù)雜類等問(wèn)題,提升網(wǎng)絡(luò)資源利用率、運(yùn)維效率、能源效率和業(yè)務(wù)體驗(yàn),使能實(shí)現(xiàn)自動(dòng)駕駛網(wǎng)絡(luò)來(lái)自:百科
- tensorflow神經(jīng)網(wǎng)絡(luò)線性回歸
- TensorFlow神經(jīng)網(wǎng)絡(luò)搭建、機(jī)器學(xué)習(xí)特征工程與計(jì)算機(jī)視覺(jué)圖像分類算法
- tensorflow2實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)
- PyTorch 深度學(xué)習(xí)實(shí)戰(zhàn) |用 TensorFlow 訓(xùn)練神經(jīng)網(wǎng)絡(luò)
- 8K 星!這可能是最適合你的 TensorFlow 教程
- 神經(jīng)網(wǎng)絡(luò)參數(shù)優(yōu)化更新的步驟——tensorflow實(shí)現(xiàn)線性回歸
- 《TensorFlow自然語(yǔ)言處理》—2.4.3 運(yùn)行神經(jīng)網(wǎng)絡(luò)
- 優(yōu)達(dá)學(xué)城深度學(xué)習(xí)之七——TensorFlow卷積神經(jīng)網(wǎng)絡(luò)
- 使用卷積神經(jīng)網(wǎng)絡(luò)識(shí)別手寫數(shù)字圖片——tensorflow部署
- 優(yōu)達(dá)學(xué)城深度學(xué)習(xí)之六——TensorFlow卷積神經(jīng)網(wǎng)絡(luò)