- 穩(wěn)定的深度學(xué)習(xí)訓(xùn)練平臺(tái) 內(nèi)容精選 換一換
-
優(yōu)化深度模型推理中GPU的利用率,加速云端在線推理。 可生成在Ascend芯片上運(yùn)行的模型,實(shí)現(xiàn)高效端邊推理。 靈活 支持多種主流開源框架(TensorFlow、Spark_MLlib、MXNet、Caffe、PyTorch、XGBoost-Sklearn)。 支持主流GPU和自研Ascend芯片。來自:百科面頂部“登錄” ,如 下圖所示: 2 我的課程 登錄成功后,點(diǎn)擊網(wǎng)站上方學(xué)習(xí)中心,看到學(xué)習(xí)的課程。 學(xué)生查看學(xué)習(xí)的課程如下圖所示: 3 課程學(xué)習(xí) 3.1 課程內(nèi)容學(xué)習(xí) 點(diǎn)擊課程圖片,進(jìn)入課程主頁學(xué)習(xí) 章節(jié)導(dǎo)航中,可以看到課程安排需要學(xué)習(xí)的內(nèi)容,如下圖所示 課程內(nèi)容包含:視頻,文檔,網(wǎng)頁,附件,測驗(yàn)和作業(yè)。來自:云商店
- 穩(wěn)定的深度學(xué)習(xí)訓(xùn)練平臺(tái) 相關(guān)內(nèi)容
-
方式二:通過引進(jìn)資源開課方式,創(chuàng)建開課。 4.1.1 開課信息設(shè)置 創(chuàng)建開課完成后,點(diǎn)擊管理,對(duì)開課進(jìn)行相關(guān)設(shè)置。 1. 可以對(duì)開課的時(shí)間、開課名稱等屬性進(jìn)行設(shè)置 2. 對(duì)本次開課的課程信息進(jìn)行設(shè)置 3. 對(duì)本次開課的教師信息進(jìn)行設(shè)置 4.1.2 教學(xué)內(nèi)容安排 點(diǎn)擊教學(xué)活動(dòng)中備課,安排和設(shè)置課程內(nèi)容。如下圖所示。 課程內(nèi)容支持來自:云商店人和車的位置。 使用ModelArts中開發(fā)工具學(xué)習(xí)Python(高級(jí)) 本實(shí)驗(yàn)指導(dǎo)用戶基于Notebook來學(xué)習(xí)Python語言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類的魔法方法的使用。 基于深度學(xué)習(xí)算法的 語音識(shí)別 利用新型的人工智能(深度學(xué)習(xí))來自:專題
- 穩(wěn)定的深度學(xué)習(xí)訓(xùn)練平臺(tái) 更多內(nèi)容
-
財(cái)務(wù)報(bào)銷場景解決方案介紹 第4章 OCR 服務(wù)二次開發(fā)案例介紹 第5章 基于ModelArts的OCR模型訓(xùn)練教程 文字識(shí)別 OCR 文字識(shí)別OCR提供在線文字識(shí)別服務(wù),將圖片或掃描件中的文字識(shí)別成可編輯的文本。 OCR文字識(shí)別 支持 證件識(shí)別 、 票據(jù)識(shí)別 、定制模板識(shí)別、通用表格文字識(shí)別等。 產(chǎn)品詳情立即注冊(cè)一元域名華為 云桌面來自:百科
GA CS )能夠提供強(qiáng)大的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場景。 GPU加速型云服務(wù)器包括圖形加速型(G系列)和計(jì)算加速型(P系列)兩類。其中: 圖形加速型即“G系列”的 彈性云服務(wù)器 ,適合于3D動(dòng)畫渲染、CAD等。 計(jì)算加速型即“P系列”的彈性云服務(wù)器,適合于深度學(xué)習(xí)、科學(xué)計(jì)算、CAE等。來自:百科
AI框架,如果MindSpore要進(jìn)行多機(jī)分布式訓(xùn)練調(diào)試,則每臺(tái)機(jī)器上都必須有8張卡。 ModelArts提供的調(diào)測代碼中涉及到的 OBS 路徑,實(shí)際使用時(shí)請(qǐng)?zhí)鎿Q為自己的實(shí)際OBS路徑。 ModelArts提供的調(diào)測代碼是以Pytorch為例編寫的,不同的AI框架之間,整體流程是完全相同的,只需要修改個(gè)別的參數(shù)即可。來自:專題
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 淺談深度學(xué)習(xí)中的混合精度訓(xùn)練
- 深度學(xué)習(xí)算法中的預(yù)訓(xùn)練(Pretraining)
- 《駕馭MXNet:深度剖析分布式深度學(xué)習(xí)訓(xùn)練的高效之道》
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型的分布式訓(xùn)練
- 深度學(xué)習(xí)算法中的協(xié)同訓(xùn)練(Co-training)
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 如何基于ModelArts實(shí)現(xiàn)最快最普惠的深度學(xué)習(xí)訓(xùn)練?
- 深度學(xué)習(xí)的分布式訓(xùn)練與集合通信(一)
- 深度學(xué)習(xí)的分布式訓(xùn)練與集合通信(三)