- 深度java機(jī)器學(xué)習(xí)框架 內(nèi)容精選 換一換
-
包。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、掌握強(qiáng)數(shù)據(jù)分析工具pandas、numpy的使用。 2、掌握?qǐng)D像處理工具pillow和scikit-image的使用。 3、掌握強(qiáng)機(jī)器學(xué)習(xí)工具scikit-learn的使用。 4、掌握深度學(xué)習(xí)框架keras、TensorFlow和pytorch的使用。來(lái)自:百科AI(人工智能)是通過機(jī)器來(lái)模擬人類認(rèn)識(shí)能力的一種科技能力。AI最核心的能力就是根據(jù)給定的輸入做出判斷或預(yù)測(cè)。 AI開發(fā)的目的是什么 AI開發(fā)的目的是將隱藏在一大批數(shù)據(jù)背后的信息集中處理并進(jìn)行提煉,從而總結(jié)得到研究對(duì)象的內(nèi)在規(guī)律。 對(duì)數(shù)據(jù)進(jìn)行分析,一般通過使用適當(dāng)?shù)慕y(tǒng)計(jì)、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等方法來(lái)自:百科
- 深度java機(jī)器學(xué)習(xí)框架 相關(guān)內(nèi)容
-
,特別是深度學(xué)習(xí)的大數(shù)據(jù)集,讓訓(xùn)練結(jié)果可重現(xiàn)。 極“快”致“簡(jiǎn)”模型訓(xùn)練 自研的MoXing深度學(xué)習(xí)框架,更高效更易用,大大提升訓(xùn)練速度。 云邊端多場(chǎng)景部署 支持模型部署到多種生產(chǎn)環(huán)境,可部署為云端在線推理和批量推理,也可以直接部署到端和邊。 自動(dòng)學(xué)習(xí) 支持多種自動(dòng)學(xué)習(xí)能力,通過來(lái)自:百科使用ModelArts中開發(fā)工具學(xué)習(xí)Python(高級(jí)) 本實(shí)驗(yàn)指導(dǎo)用戶基于Notebook來(lái)學(xué)習(xí)Python語(yǔ)言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類的魔法方法的使用。 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)來(lái)自:專題
- 深度java機(jī)器學(xué)習(xí)框架 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 什么是 數(shù)據(jù)治理 組織架構(gòu)框架 什么是數(shù)據(jù)治理組織架構(gòu)框架 時(shí)間:2020-09-09 10:36:02 數(shù)據(jù)治理可以采用集中化(全時(shí)投入)和虛擬化(部分投入)混合的組織模式。結(jié)合具備專業(yè)技能的專職數(shù)據(jù)治理人員和熟悉業(yè)務(wù)和IT系統(tǒng)的已有人員,在運(yùn)作上實(shí)現(xiàn)數(shù)據(jù)治理團(tuán)來(lái)自:百科方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測(cè)、評(píng)價(jià)等結(jié)果。 ModelArts模型訓(xùn)練,俗稱“建模”,指通過分析手段、方法和技巧對(duì)準(zhǔn)備好來(lái)自:專題時(shí)間:2020-12-14 10:07:11 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索是當(dāng)前深度學(xué)習(xí)最熱門的話題之一,已經(jīng)成為了一大研究潮流。本課程將介紹神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索的理論基礎(chǔ)、應(yīng)用和發(fā)展現(xiàn)狀。 課程簡(jiǎn)介 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索(NAS) 是一種自動(dòng)設(shè)計(jì)人工神經(jīng)網(wǎng)絡(luò)的技術(shù),是機(jī)器學(xué)習(xí)領(lǐng)域中廣泛應(yīng)用的模型。本課程將介紹神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索的理論基礎(chǔ)。來(lái)自:百科的最末端,它是查詢和存儲(chǔ)數(shù)據(jù)的系統(tǒng),是各業(yè)務(wù)數(shù)據(jù)最終落地的承載者,而當(dāng)今社會(huì)最值錢的又是擁有大量的數(shù)據(jù),因此其 數(shù)據(jù)庫(kù)安全 性至關(guān)重要。 立即學(xué)習(xí) 最新文章 替換VolcanoJobreplaceBatchVolcanoShV1alpha1NamespacedJob 查詢Volcan來(lái)自:百科數(shù)據(jù)集,又稱為資料集、數(shù)據(jù)集合或資料集合,是一種由數(shù)據(jù)所組成的集合。數(shù)據(jù)反映了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對(duì)AI開發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理 提供了一套高效便捷的管理和標(biāo)注數(shù)據(jù)集框架。不僅支持圖片、文本、語(yǔ)音、視頻等多種數(shù)據(jù)類型,涵蓋圖像分類、目標(biāo)檢測(cè)、音頻分割來(lái)自:百科lab.huaweicloud.com/testdetail.html?testId=439為準(zhǔn)。 開發(fā)者學(xué)習(xí)中心 開發(fā)者一站式學(xué)習(xí)、體驗(yàn)中心,學(xué)有所得、學(xué)有所樂! 立即學(xué)習(xí) [ 免費(fèi)體驗(yàn)中心 ]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開啟云上之旅免費(fèi) 最新文章 替換VolcanoJobreplace來(lái)自:百科
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.1.2 傳統(tǒng)機(jī)器學(xué)習(xí)與深度學(xué)習(xí)的對(duì)比
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 深度學(xué)習(xí)框架(PyTorch)
- 機(jī)器學(xué)習(xí)——深度學(xué)習(xí)(Deep Learning)
- 機(jī)器學(xué)習(xí)之深度學(xué)習(xí)簡(jiǎn)介
- 機(jī)器學(xué)習(xí)框架指南
- 機(jī)器學(xué)習(xí)(八):深度學(xué)習(xí)簡(jiǎn)介
- 深度學(xué)習(xí)修煉(一)——從機(jī)器學(xué)習(xí)轉(zhuǎn)向深度學(xué)習(xí)
- PyTorch深度學(xué)習(xí)領(lǐng)域框架
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2 深度學(xué)習(xí)框架
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.3 本書涉及的深度學(xué)習(xí)框架