- 醫(yī)學(xué)成像的深度學(xué)習(xí)工具包 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、 語音識別 、自然語言處理等其他領(lǐng)域。來自:百科來自:百科
- 醫(yī)學(xué)成像的深度學(xué)習(xí)工具包 相關(guān)內(nèi)容
-
云知識 基于深度學(xué)習(xí)算法的語音識別 基于深度學(xué)習(xí)算法的語音識別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識別的實(shí)戰(zhàn)演練,讓使用者在了解語音識別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解如下知識: 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級神經(jīng)網(wǎng)絡(luò) 第4章來自:百科
- 醫(yī)學(xué)成像的深度學(xué)習(xí)工具包 更多內(nèi)容
-
華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科
Python作為目前最為流行的一種編程語言,擁有數(shù)十萬的工具包,包含了非常多的領(lǐng)域,如:用于數(shù)據(jù)分析和計(jì)算的numpy、pandas; 數(shù)據(jù)可視化 工具matplotlib等。 課程簡介 本課程將會講解Python在數(shù)據(jù)分析、AI和圖像處理等領(lǐng)域常用的工具包。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員:來自:百科
(32G顯存),在提供云服務(wù)器靈活性的同時(shí),提供高性能計(jì)算能力和優(yōu)秀的性價(jià)比。P2vs型 彈性云服務(wù)器 支持GPU NVLink技術(shù),實(shí)現(xiàn)GPU之間的直接通信,提升GPU之間的數(shù)據(jù)傳輸效率。能夠提供超高的通用計(jì)算能力,適用于AI深度學(xué)習(xí)、科學(xué)計(jì)算,在深度學(xué)習(xí)訓(xùn)練、科學(xué)計(jì)算、計(jì)算流體動(dòng)力學(xué)、來自:百科
法應(yīng)用,并實(shí)現(xiàn)售賣機(jī)的智能化運(yùn)營,是一個(gè)貫穿數(shù)據(jù)開發(fā)、數(shù)據(jù)采集、數(shù)據(jù)挖掘應(yīng)用的完整項(xiàng)目。 開發(fā)者進(jìn)階課程 《EC-IoT物聯(lián)網(wǎng)技術(shù)開發(fā)實(shí)戰(zhàn)》 EC-IoT是將對實(shí)時(shí)性、安全性和可靠性有嚴(yán)格要求的應(yīng)用部署在靠近數(shù)據(jù)源頭的網(wǎng)絡(luò)邊緣節(jié)點(diǎn)(如網(wǎng)關(guān))上,讓數(shù)據(jù)在最短的時(shí)間內(nèi)得到分析和處理,來自:專題
《基于物聯(lián)網(wǎng)平臺構(gòu)建智慧路燈應(yīng)用》 《基于物聯(lián)網(wǎng)平臺的自販機(jī)銷量分析》 《基于物聯(lián)網(wǎng)平臺構(gòu)建智慧路燈應(yīng)用》 《基于物聯(lián)網(wǎng)平臺的自販機(jī)銷量分析》 在線課程 完成使命認(rèn)證即可免費(fèi)使用 《人人學(xué)IoT》 本課程從物聯(lián)網(wǎng)的背景知識引入,通過物聯(lián)網(wǎng)概述到“云-管-端“的課程體系,涵蓋華為物聯(lián)網(wǎng)認(rèn)證60%的知識點(diǎn),帶大家從華為物聯(lián)網(wǎng)入門到精通。來自:專題
角色: IAM 最初提供的一種根據(jù)用戶的工作職能定義權(quán)限的粗粒度授權(quán)機(jī)制。該機(jī)制以服務(wù)為粒度,提供有限的服務(wù)相關(guān)角色用于授權(quán) IAM最新提供的一種細(xì)粒度授權(quán)的能力,可以精確到具體服務(wù)的操作、資源以及請求條件等?;诓呗?span style='color:#C7000B'>的授權(quán)是一種更加靈活的授權(quán)方式,能夠滿足企業(yè)對權(quán)限最小化的安全管控要求。來自:專題
- 機(jī)器會“看病”?深度學(xué)習(xí)正在顛覆醫(yī)學(xué)成像!
- 探索深度學(xué)習(xí)技術(shù)在地震成像中的潛力
- 深度學(xué)習(xí)在醫(yī)學(xué)影像中的最新突破
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:醫(yī)學(xué)影像識別與疾病預(yù)測
- 深度學(xué)習(xí)實(shí)戰(zhàn)(六):使用 PyTorch 進(jìn)行 3D 醫(yī)學(xué)圖像分割
- 《解鎖圖像“高清密碼”:超分辨率重建之路》
- Opencv 圖像處理:數(shù)字圖像的必會知識
- 生物醫(yī)學(xué)影像自適應(yīng)全自動(dòng)深度學(xué)習(xí)分割網(wǎng)絡(luò)nnU-net詳解
- 【醫(yī)學(xué)圖像分割】基于matlab磁共振成像 (MRI) 數(shù)值模擬平臺【含Matlab源碼 826期】
- 華為云的研究成果又雙叒叕被MICCAI收錄了!