- 神經(jīng)網(wǎng)絡(luò)算法 深度學(xué)習(xí)算法 內(nèi)容精選 換一換
-
實(shí)時(shí)語(yǔ)音識(shí)別 、錄音文件識(shí)別有如下優(yōu)勢(shì): 識(shí)別準(zhǔn)確率高:采用最新一代 語(yǔ)音識(shí)別 技術(shù),基于深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks,簡(jiǎn)稱(chēng)DNN)技術(shù),大大提高了抗噪性能,使識(shí)別準(zhǔn)確率顯著提升。 識(shí)別速度快:把語(yǔ)言模型、詞典和聲學(xué)模型統(tǒng)一集成為一個(gè)大的神經(jīng)網(wǎng)絡(luò),同時(shí)在工程上進(jìn)行了大量的優(yōu)化,大幅提升解碼速度,使識(shí)別速度在業(yè)內(nèi)處于領(lǐng)先地位。來(lái)自:專(zhuān)題
- 神經(jīng)網(wǎng)絡(luò)算法 深度學(xué)習(xí)算法 相關(guān)內(nèi)容
-
模型超參自動(dòng)優(yōu)化,簡(jiǎn)單快速。 零代碼開(kāi)發(fā),簡(jiǎn)單操作訓(xùn)練出自己的模型。 支持模型一鍵部署到云、邊、端。 高性能 自研MoXing深度學(xué)習(xí)框架,提升算法開(kāi)發(fā)效率和訓(xùn)練速度。 優(yōu)化深度模型推理中GPU的利用率,加速云端在線(xiàn)推理。 可生成在Ascend芯片上運(yùn)行的模型,實(shí)現(xiàn)高效端邊推理。 靈活 支持來(lái)自:百科的開(kāi)展藥物研發(fā)工作。 醫(yī)療智能體 將深度學(xué)習(xí)算法及藥物分析服務(wù)融入藥物研發(fā)過(guò)程,讓藥企能更快速高效地完成藥物研發(fā),節(jié)約研發(fā)成本。 醫(yī)療影像:提供醫(yī)療影像大數(shù)據(jù)的智能標(biāo)注、難例篩選和自動(dòng)學(xué)習(xí)服務(wù),使用AI輔助診斷,完成病例分析、病灶篩查、靶區(qū)勾勒、三維重建等,全面支撐科研機(jī)構(gòu)及醫(yī)院影像來(lái)自:百科
- 神經(jīng)網(wǎng)絡(luò)算法 深度學(xué)習(xí)算法 更多內(nèi)容
-
煙火監(jiān)測(cè)產(chǎn)品 煙霧火焰檢測(cè) 煙霧火焰檢測(cè)算法適用于室內(nèi)、園區(qū)等低空?qǐng)鼍埃?采用自定義深度學(xué)習(xí)網(wǎng)絡(luò)及區(qū)域回歸算法,高效提取煙霧、明火火焰特征; 對(duì)低空?qǐng)鼍爸械臒熿F火焰目標(biāo)進(jìn)行檢測(cè), 并定位目標(biāo)在畫(huà)面中的位置,進(jìn)行及時(shí)有效的報(bào)警。 查看詳情 煤氣罐識(shí)別 煤氣罐檢測(cè)算法主要針對(duì)出現(xiàn)在監(jiān)測(cè)視頻畫(huà)面中的限制區(qū)域進(jìn)行煤氣罐的檢測(cè)來(lái)自:專(zhuān)題定制語(yǔ)音識(shí)別,基于深度學(xué)習(xí)技術(shù),提供針對(duì)特定領(lǐng)域優(yōu)化的語(yǔ)音識(shí)別能力,并可自定義語(yǔ)言模型。可根據(jù)客戶(hù)特定需求深度定制,提升產(chǎn)品的人機(jī)交互體驗(yàn)。 產(chǎn)品特性 高識(shí)別率 基于深度學(xué)習(xí)技術(shù),對(duì)特定領(lǐng)域場(chǎng)景和語(yǔ)料進(jìn)行優(yōu)化,語(yǔ)音識(shí)別率達(dá)到業(yè)界領(lǐng)先 前沿技術(shù) 使用工業(yè)界成熟的算法,結(jié)合語(yǔ)音識(shí)別學(xué)術(shù)來(lái)自:百科實(shí)戰(zhàn)派帶你云上體驗(yàn)機(jī)器學(xué)習(xí),不會(huì)算法照樣玩轉(zhuǎn)AI。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:人工智能發(fā)展歷程及行業(yè)應(yīng)用介紹,機(jī)器學(xué)習(xí)講解及實(shí)操演示、AI應(yīng)用學(xué)習(xí)方法介紹。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解行業(yè)趨勢(shì)及應(yīng)用前景、掌握機(jī)器學(xué)習(xí)的應(yīng)用,及如何進(jìn)行AI應(yīng)用的學(xué)習(xí)。 課程大綱 第1節(jié)來(lái)自:百科9、中軟宅客學(xué)院在線(xiàn)平臺(tái)網(wǎng)絡(luò)人工智能課程介紹及7天實(shí)戰(zhàn)、人才測(cè)評(píng)。 聽(tīng)眾收益: 1、了解人工智能基本知識(shí)體系; 2、了解機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)基礎(chǔ)與實(shí)踐; 3、了解AutoML相關(guān)概念和前沿技術(shù); 4、了解Vega的架構(gòu)和算法及網(wǎng)絡(luò)人工智能平臺(tái)的使用方法; 5、了解電信領(lǐng)域業(yè)務(wù)的問(wèn)題和挑戰(zhàn),及AutoML技術(shù)在電信領(lǐng)域中的應(yīng)用;來(lái)自:百科制的小事交給ModelArts Pro。 AI開(kāi)發(fā)平臺(tái) ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶(hù)快速創(chuàng)建和部署模型,管理全周期AI工作流。來(lái)自:百科針對(duì)出現(xiàn)在視頻畫(huà)面中特定區(qū)域的人員進(jìn)行檢測(cè),當(dāng)畫(huà)面中人數(shù)超過(guò)一定閾值,則判定為人員匯聚,目前算法設(shè)定的閾值為5人(包含5人)。 算法采用機(jī)器視覺(jué)圖像感知技術(shù),通過(guò)計(jì)算機(jī)視覺(jué)技術(shù)及深度學(xué)習(xí)技術(shù),對(duì)人員的精確檢測(cè)、跟蹤,實(shí)現(xiàn)對(duì)人體檢測(cè)分析檢測(cè),智能分析精確區(qū)分人和干擾物體,如其他移動(dòng)來(lái)自:云商店析;如何基于歷史數(shù)據(jù)學(xué)習(xí)與運(yùn)維經(jīng)驗(yàn)庫(kù),對(duì)異常進(jìn)行智能分析并給出可能原因。 AOM 通過(guò)AI智能算法分析各類(lèi)運(yùn)維指標(biāo)趨勢(shì)變化,提前預(yù)測(cè)潛在異常,包括指標(biāo)的增幅過(guò)高、規(guī)律變化等。 優(yōu)勢(shì) 場(chǎng)景智能識(shí)別:根據(jù)運(yùn)維指標(biāo)特征選擇算法匹配,如狀態(tài)跳變、周期異常等。 自適應(yīng)算法:當(dāng)出現(xiàn)過(guò)多告警時(shí),自動(dòng)調(diào)整算法參數(shù)抑制告警。來(lái)自:百科自動(dòng)檢測(cè)壓板投退狀態(tài)并實(shí)時(shí)反饋,為安監(jiān)人員進(jìn)行現(xiàn)場(chǎng)監(jiān)督提供技術(shù)保障。 商品介紹 基于大規(guī)模壓板圖片數(shù)據(jù)檢測(cè)訓(xùn)練,將算法加載到攝像機(jī)內(nèi)部,利用攝像機(jī)AI芯片強(qiáng)大的分析推理能力,實(shí)現(xiàn)視頻畫(huà)面實(shí)時(shí)分析,通過(guò)深度學(xué)習(xí)算法實(shí)時(shí)檢測(cè)各種壓板的狀態(tài)。 服務(wù)商簡(jiǎn)介 深圳市鐵越電氣有限公司成立于2000年初,注冊(cè)資金90來(lái)自:云商店呼吸器顏色智能檢測(cè)是用智能攝像機(jī)的前端AI技術(shù)對(duì)變壓器工作現(xiàn)場(chǎng)的視頻進(jìn)行實(shí)時(shí)分析,基于大規(guī)模呼吸器圖片數(shù)據(jù)檢測(cè)訓(xùn)練,將算法加載到攝像機(jī)內(nèi)部,利用攝像機(jī)AI芯片強(qiáng)大的分析推理能力,實(shí)現(xiàn)視頻畫(huà)面實(shí)時(shí)分析,通過(guò)深度學(xué)習(xí)算法準(zhǔn)確判定呼吸器顏色是否變色,監(jiān)理人員能夠第一時(shí)間獲取相關(guān)圖像,并及時(shí)更換硅膠,為變壓器安全運(yùn)行提供安全保障。來(lái)自:云商店HiLens Kit上運(yùn)行。 ModelArts自動(dòng)學(xué)習(xí)功能訓(xùn)練生成的模型,暫時(shí)不支持用于Huawei HiLens平臺(tái) 。 AI開(kāi)發(fā)平臺(tái)ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Tra來(lái)自:百科
- 深度學(xué)習(xí)中必備的算法:神經(jīng)網(wǎng)絡(luò)、卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí)算法中的遞歸神經(jīng)網(wǎng)絡(luò)(Recursive Neural Networks)
- 深度學(xué)習(xí)算法中的 循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks)
- 深度學(xué)習(xí)算法中的 神經(jīng)網(wǎng)絡(luò)集成(Neural Network Ensembles)
- 深度學(xué)習(xí)經(jīng)典算法 | 粒子群算法詳解
- 深度學(xué)習(xí)經(jīng)典算法 | 遺傳算法詳解
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——3.3 LeNet的學(xué)習(xí)算法
- 深度學(xué)習(xí)經(jīng)典算法 | 蟻群算法解析
- 深度學(xué)習(xí)算法詳細(xì)介紹
- 深度神經(jīng)網(wǎng)絡(luò)(DNN)反向傳播算法(BP)