- 深度自學(xué)習(xí)用于數(shù)據(jù)預(yù)測(cè) 內(nèi)容精選 換一換
-
什么是熱數(shù)據(jù)、溫數(shù)據(jù)、冷數(shù)據(jù)? 什么是熱數(shù)據(jù)、溫數(shù)據(jù)、冷數(shù)據(jù)? 時(shí)間:2021-05-25 16:02:57 存儲(chǔ)與備份 熱數(shù)據(jù)指頻繁訪問的在線類數(shù)據(jù),對(duì)存儲(chǔ)性能要求高。 冷數(shù)據(jù)指不經(jīng)常訪問的離線類數(shù)據(jù),比如備份和歸檔數(shù)據(jù)。存儲(chǔ)性能要求相對(duì)低,要求大容量存儲(chǔ)介質(zhì)。 溫數(shù)據(jù)的訪問頻來(lái)自:百科時(shí)間:2022-09-29 11:13:17 物聯(lián)網(wǎng) 智慧交通物流 IoT技術(shù)認(rèn)證 物聯(lián)網(wǎng)邊緣主要應(yīng)用在數(shù)據(jù)傳輸量大,安全與隱私保護(hù)要求高,數(shù)據(jù)需要實(shí)時(shí)處理等行業(yè)或應(yīng)用場(chǎng)景。下面來(lái)為大家介紹一下常見的物聯(lián)網(wǎng)邊緣場(chǎng)景如何深度使用,如智慧交通、智慧園區(qū)、智能制造、智慧倉(cāng)儲(chǔ)等。 華為云IoT增強(qiáng)邊緣智能計(jì)算,實(shí)現(xiàn)交通風(fēng)險(xiǎn)預(yù)警來(lái)自:百科
- 深度自學(xué)習(xí)用于數(shù)據(jù)預(yù)測(cè) 相關(guān)內(nèi)容
-
海量業(yè)務(wù)下,出現(xiàn)百種指標(biāo)監(jiān)控、KPI數(shù)據(jù)、調(diào)用跟蹤數(shù)據(jù)等豐富但無(wú)關(guān)聯(lián)的運(yùn)維數(shù)據(jù),如何通過應(yīng)用、服務(wù)、實(shí)例、主機(jī)和事務(wù)等多視角分析關(guān)聯(lián)指標(biāo)和告警數(shù)據(jù),自動(dòng)完成故障根因分析;如何基于歷史數(shù)據(jù)學(xué)習(xí)與運(yùn)維經(jīng)驗(yàn)庫(kù),對(duì)異常進(jìn)行智能分析并給出可能原因。 AOM 通過AI智能算法分析各類運(yùn)維指標(biāo)趨勢(shì)變化,提前預(yù)測(cè)潛在異常,包括指標(biāo)的增幅過高、規(guī)律變化等。來(lái)自:百科企業(yè)在經(jīng)營(yíng)管理決策中,通常需要面對(duì)大量的數(shù)據(jù)報(bào)表,但是各部門數(shù)據(jù)往往過于復(fù)雜,難以完成多部門數(shù)據(jù)指標(biāo)的綜合分析,嚴(yán)重影響企業(yè)的高效經(jīng)營(yíng)決策。 華為云Astro Canvas提供300+行業(yè)資產(chǎn)與數(shù)據(jù)可視化方案,支撐客戶(開發(fā)者)自定義場(chǎng)景,并提供低延時(shí)的3D實(shí)時(shí)渲染能力,為企業(yè)提供深度數(shù)據(jù)分析與決策支持。來(lái)自:百科
- 深度自學(xué)習(xí)用于數(shù)據(jù)預(yù)測(cè) 更多內(nèi)容
-
加密云硬盤的備份數(shù)據(jù)會(huì)以加密方式存放。 云存儲(chǔ) 彈性文件服務(wù)SFS SFS服務(wù)端數(shù)據(jù)加密 云數(shù)據(jù)庫(kù) 云數(shù)據(jù)庫(kù)MySQL、云數(shù)據(jù)庫(kù)Postgre SQL、云數(shù)據(jù)庫(kù)SQL Server RDS數(shù)據(jù)庫(kù)服務(wù)端數(shù)據(jù)加密 云數(shù)據(jù)庫(kù) 文檔數(shù)據(jù)庫(kù)服務(wù) DDS DDS數(shù)據(jù)庫(kù)服務(wù)端數(shù)據(jù)加密 EI企業(yè)智能來(lái)自:專題BI,即商業(yè)智能,指利用大數(shù)據(jù)分析、現(xiàn)代數(shù)據(jù)倉(cāng)庫(kù)等技術(shù)收集企業(yè)最新數(shù)據(jù)、形成BI報(bào)表并及時(shí)為企業(yè)員工提供BI數(shù)據(jù)分析報(bào)告,實(shí)現(xiàn)對(duì)業(yè)務(wù)數(shù)據(jù)的深入挖掘以獲取更多商業(yè)價(jià)值。大多數(shù)企業(yè)每天都會(huì)收集海量業(yè)務(wù)數(shù)據(jù),這些數(shù)據(jù)來(lái)自其 ERP 軟件(了解什么是ERP)、電商平臺(tái)、供應(yīng)鏈以及許多其他內(nèi)部和外部數(shù)據(jù)源。要來(lái)自:專題強(qiáng)調(diào)以數(shù)據(jù)為核心的綜合管理。 多維數(shù)據(jù)融合,綜合優(yōu)化航跡 利用航空通信、導(dǎo)航、監(jiān)控、氣象等領(lǐng)域的新技術(shù)為空中交通管理提供更完善的基礎(chǔ)設(shè)施保障,機(jī)載數(shù)據(jù)、文本數(shù)據(jù)、音頻數(shù)據(jù)、視頻數(shù)據(jù)等空管數(shù)據(jù)融合,有效支撐空管業(yè)務(wù)。 空管數(shù)據(jù)智能化,輔助業(yè)務(wù)決策 利用空管大數(shù)據(jù)融合,基于深度學(xué)習(xí)、來(lái)自:百科數(shù)據(jù)會(huì)影響到消費(fèi)者體驗(yàn)、對(duì)市場(chǎng)及產(chǎn)品的判斷……”,通過對(duì)業(yè)務(wù)數(shù)據(jù)進(jìn)行抽取和集成,讓數(shù)據(jù)價(jià)值化、效用化,可以幫助決策層科學(xué)決策。 ● 驅(qū)動(dòng)企業(yè)產(chǎn)品和管理創(chuàng)新:大數(shù)據(jù)時(shí)代,產(chǎn)業(yè)不斷重新細(xì)分、深度融合,數(shù)據(jù)能力帶來(lái)核心能力的提高,擴(kuò)大了企業(yè)的規(guī)模邊界,使企業(yè)具備了尋求利潤(rùn)增長(zhǎng)點(diǎn)和擴(kuò)大規(guī)來(lái)自:云商店提供,日常例行網(wǎng)絡(luò)維護(hù)自動(dòng)化,網(wǎng)絡(luò)故障預(yù)測(cè)智能化,以及通過意 圖引擎 集成客戶和合作伙伴的解決方案,共建網(wǎng)絡(luò)生態(tài),從對(duì)外開放集成角度,IDN提供了北向的restful,netconf等標(biāo)準(zhǔn)化接口,以及自動(dòng)化熱發(fā)布的API Catelog工具,用于openAPI接口的自定義,簡(jiǎn)化和廠商來(lái)自:百科華為云計(jì)算 云知識(shí) DDM 實(shí)現(xiàn)數(shù)據(jù)數(shù)據(jù)分片方法 DDM實(shí)現(xiàn)數(shù)據(jù)數(shù)據(jù)分片方法 時(shí)間:2021-05-31 16:17:12 數(shù)據(jù)庫(kù) 傳統(tǒng)由應(yīng)用自己實(shí)現(xiàn)分片: 1. 應(yīng)用邏輯復(fù)雜:由應(yīng)用改寫SQL語(yǔ)句,將SQL路由到不同的DB,并聚合結(jié)果; 2. DB故障和調(diào)整都需要應(yīng)用同步調(diào)整,運(yùn)維難度劇增;來(lái)自:百科不破”的數(shù)字化轉(zhuǎn)型架構(gòu),即以云為基礎(chǔ)、數(shù)據(jù)驅(qū)動(dòng)的新型IT架構(gòu),同時(shí),企業(yè)已有的CRM、ERP等應(yīng)用系統(tǒng)推倒重來(lái)不現(xiàn)實(shí),因此需建立融合新老系統(tǒng)的雙模式IT架構(gòu),把企業(yè)新老數(shù)據(jù)和應(yīng)用與未來(lái)正在發(fā)生的數(shù)據(jù)聯(lián)結(jié)在一起,構(gòu)建統(tǒng)一數(shù)據(jù)與應(yīng)用平臺(tái),使能數(shù)據(jù)產(chǎn)生價(jià)值,這就是面向未來(lái)的“立而不破”的新型企業(yè)數(shù)字化轉(zhuǎn)型架構(gòu)。來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)主題聯(lián)接(數(shù)據(jù)中臺(tái)) 數(shù)據(jù)主題聯(lián)接(數(shù)據(jù)中臺(tái)) 時(shí)間:2020-11-18 16:38:33 數(shù)據(jù)主題聯(lián)接(數(shù)據(jù)中臺(tái))對(duì)數(shù)據(jù)湖的數(shù)據(jù)按業(yè)務(wù)流/事件、對(duì)象/主體進(jìn)行聯(lián)接和規(guī)則計(jì)算等處理,形成面向數(shù)據(jù)消費(fèi)的主題數(shù)據(jù),具有多角度、多層次、多粒度等特征,支撐業(yè)務(wù)分析、決策與執(zhí)行。來(lái)自:百科云知識(shí) 數(shù)據(jù)湖數(shù)據(jù)庫(kù) 數(shù)據(jù)湖數(shù)據(jù)庫(kù) 時(shí)間:2020-12-04 11:23:11 數(shù)據(jù)湖探索( DLI )中數(shù)據(jù)庫(kù)的概念、基本用法與Oracle數(shù)據(jù)庫(kù)基本相同,它還是DLI管理權(quán)限的基礎(chǔ)單元,賦權(quán)以數(shù)據(jù)庫(kù)為單位。 在DLI中,表和數(shù)據(jù)庫(kù)是定義底層數(shù)據(jù)的元數(shù)據(jù)容器。表中的元數(shù)據(jù)讓DLI來(lái)自:百科務(wù)進(jìn)行數(shù)據(jù)分析,能妥善處理海量的用戶數(shù)據(jù),幫助游戲廠商和俱樂部進(jìn)行更好的戰(zhàn)略決策。 電競(jìng)行業(yè)解決方案深度解析,逃殺游戲用戶行為的數(shù)據(jù)模擬實(shí)戰(zhàn),帶你解密大數(shù)據(jù) 適合人群:對(duì)大數(shù)據(jù)技術(shù)感興趣的人員、社會(huì)大眾和高校師生 培訓(xùn)方案:利用華為云服務(wù)中大數(shù)據(jù)平臺(tái)服務(wù),實(shí)現(xiàn)逃殺游戲數(shù)據(jù)離線分析與可視化來(lái)自:專題華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù)DWS冷熱數(shù)據(jù)分離 數(shù)據(jù)倉(cāng)庫(kù)DWS冷熱數(shù)據(jù)分離 時(shí)間:2021-03-05 15:08:32 數(shù)據(jù)倉(cāng)庫(kù) DWS將 OBS 上存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù)映射為外部表,從而利用數(shù)據(jù)庫(kù)SQL引擎的能力對(duì)OBS上的數(shù)據(jù)進(jìn)行分析。DWS數(shù)據(jù)倉(cāng)庫(kù) SQL On OBS,冷熱數(shù)據(jù)分離,歷史數(shù)據(jù)查詢免搬遷。來(lái)自:百科相同引擎數(shù)據(jù)庫(kù)之間數(shù)據(jù)導(dǎo)入導(dǎo)出,稱之為同構(gòu)型數(shù)據(jù)庫(kù)之間數(shù)據(jù)導(dǎo)入導(dǎo)出。不同引擎數(shù)據(jù)庫(kù)之間數(shù)據(jù)導(dǎo)入導(dǎo)出,稱之為異構(gòu)型數(shù)據(jù)庫(kù)之間數(shù)據(jù)導(dǎo)入導(dǎo)出。 mysql云數(shù)據(jù)庫(kù)必讀文檔 什么是云數(shù)據(jù)庫(kù)RDS 云數(shù)據(jù)庫(kù)RDS是一種基于 云計(jì)算平臺(tái) 的穩(wěn)定可靠、彈性伸縮、便捷管理的在線云數(shù)據(jù)庫(kù)服務(wù)。云數(shù)據(jù)庫(kù)RDS支持以下引擎:MySQL,PostgreSQL,SQL來(lái)自:專題
- Smiles2vec | 用于預(yù)測(cè)化學(xué)性質(zhì)的深度神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí)+用戶行為預(yù)測(cè):揭秘?cái)?shù)據(jù)背后的故事
- 深度學(xué)習(xí)技術(shù)在測(cè)井?dāng)?shù)據(jù)預(yù)測(cè)與模擬中的應(yīng)用
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 預(yù)測(cè)工資——線性回歸
- 深度學(xué)習(xí)—線性回歸預(yù)測(cè)銷售額
- 深度學(xué)習(xí)案例分享 | 房?jī)r(jià)預(yù)測(cè) - PyTorch 實(shí)現(xiàn)
- 使用深度學(xué)習(xí)進(jìn)行油藏預(yù)測(cè)和優(yōu)化
- 【深度學(xué)習(xí)】天氣數(shù)據(jù)預(yù)測(cè)農(nóng)作物生長(zhǎng)環(huán)境的系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)(預(yù)測(cè)+可視化大屏)
- 深度學(xué)習(xí)進(jìn)軍網(wǎng)絡(luò)安全監(jiān)控:AI能否守護(hù)你的數(shù)據(jù)?
- 數(shù)據(jù)挖掘之預(yù)測(cè)