- 深度學(xué)習(xí)做視覺(jué)伺服 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 計(jì)算機(jī)視覺(jué)基礎(chǔ):深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò) 計(jì)算機(jī)視覺(jué)基礎(chǔ):深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò) 時(shí)間:2020-12-17 09:56:23 通過(guò)學(xué)習(xí),您將掌握計(jì)算機(jī)視覺(jué)的基本概念和主要知識(shí)點(diǎn),并且對(duì)于計(jì)算機(jī)視覺(jué)和廣義人工智能的方法論有一定的認(rèn)識(shí),初步具備判斷計(jì)算機(jī)視覺(jué)是否適合解決特定問(wèn)題的能力。來(lái)自:百科
- 深度學(xué)習(xí)做視覺(jué)伺服 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科
- 深度學(xué)習(xí)做視覺(jué)伺服 更多內(nèi)容
-
從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科點(diǎn)狀態(tài)統(tǒng)一監(jiān)控。 工業(yè)互聯(lián)網(wǎng)解決方案 華為工業(yè)互聯(lián)網(wǎng)平臺(tái)FusionPlant,包含聯(lián)接管理平臺(tái)、 工業(yè)智能體 、工業(yè)應(yīng)用平臺(tái)三大部分。定位于做企業(yè)增量的智能決策系統(tǒng),實(shí)現(xiàn)業(yè)務(wù)在云上敏捷開(kāi)發(fā),邊緣可信運(yùn)行。賦能行業(yè)合作伙伴深耕工業(yè)核心業(yè)務(wù)流,持續(xù)釋放潛在業(yè)務(wù)價(jià)值 服務(wù)咨詢 工業(yè)互聯(lián)網(wǎng)區(qū)域平臺(tái)來(lái)自:百科升。 讓我們來(lái)看一下華為云 圖像識(shí)別 Image在實(shí)際應(yīng)用中的表現(xiàn)。在新聞傳媒行業(yè),新聞長(zhǎng)短視頻、圖片可以通過(guò)華為云圖像識(shí)別Image做智能編目,對(duì)素材做標(biāo)簽管理,配合搜索引擎使用。在游戲行業(yè),對(duì)游戲人物、道具等圖片資料打標(biāo)簽,方便檢索。在教育行業(yè),插畫(huà)素材、視頻素材、視頻課程都可以來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)字視覺(jué)預(yù)處理機(jī)制介紹 數(shù)字視覺(jué)預(yù)處理機(jī)制介紹 時(shí)間:2020-08-19 09:16:46 當(dāng)輸入數(shù)據(jù)進(jìn)入數(shù)據(jù)引擎時(shí),引擎一旦檢查發(fā)現(xiàn)數(shù)據(jù)格式不滿足后續(xù)AI Core的處理需求,則可開(kāi)啟數(shù)字視覺(jué)預(yù)處理模塊進(jìn)行數(shù)據(jù)預(yù)處理。如圖所示的數(shù)據(jù)流所示,以圖片預(yù)處理為例:來(lái)自:百科人員進(jìn)行倒地檢測(cè),算法采用機(jī)器視覺(jué)圖像感知技術(shù),通過(guò)計(jì)算機(jī)視覺(jué)技術(shù)及深度學(xué)習(xí)技術(shù),對(duì)人員的精確檢測(cè)跟蹤,實(shí)現(xiàn)對(duì)人體倒地檢測(cè)分析檢測(cè)。 商品介紹 針對(duì)出現(xiàn)在視頻畫(huà)面中特定區(qū)域的人員進(jìn)行倒地檢測(cè),算法采用機(jī)器視覺(jué)圖像感知技術(shù),通過(guò)計(jì)算機(jī)視覺(jué)技術(shù)及深度學(xué)習(xí)技術(shù),對(duì)人員的精確檢測(cè)、跟蹤,來(lái)自:云商店享了基于華為機(jī)器視覺(jué)產(chǎn)品(軟件定義攝像機(jī)、智能視頻存儲(chǔ)、華為好望商城、華為 好望云服務(wù) )結(jié)合各自賽隊(duì)優(yōu)秀算法和應(yīng)用的聯(lián)合方案及優(yōu)秀實(shí)踐。 華為機(jī)器視覺(jué)總裁 段愛(ài)國(guó) 致辭 經(jīng)過(guò)激烈的角逐,最終大賽決出1個(gè)金獎(jiǎng)、2個(gè)銀獎(jiǎng)、8個(gè)優(yōu)勝獎(jiǎng),華為機(jī)器視覺(jué)總裁段愛(ài)國(guó)、華為機(jī)器視覺(jué)負(fù)責(zé)產(chǎn)業(yè)發(fā)展副總來(lái)自:云商店但對(duì)普通開(kāi)發(fā)者來(lái)說(shuō),AI入門(mén)普遍存在如下難點(diǎn): 一是缺乏AI基礎(chǔ)知識(shí),做AI開(kāi)發(fā)涉及到Python編程知識(shí)、Linux知識(shí),視覺(jué)方面要學(xué)圖像處理等,同時(shí)還要有一定的數(shù)學(xué)基礎(chǔ)。 二是學(xué)習(xí)不系統(tǒng),很多書(shū)籍只介紹了AI發(fā)展的基礎(chǔ)框架,缺乏專業(yè)的學(xué)習(xí)路徑、技術(shù)講解及具體場(chǎng)景的應(yīng)用。 三是沒(méi)有專家講師帶領(lǐng)來(lái)自:百科09:28:38 深度神經(jīng)網(wǎng)絡(luò)讓機(jī)器擁有了視覺(jué)的能力,實(shí)戰(zhàn)派帶你探索深度學(xué)習(xí)! 課程簡(jiǎn)介 本課程主要內(nèi)容包括:深度學(xué)習(xí)平臺(tái)介紹、神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類模型、經(jīng)典入門(mén)示例詳解:構(gòu)建手寫(xiě)數(shù)字識(shí)別模型。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門(mén)深度學(xué)習(xí)。 課程大綱 第1節(jié)來(lái)自:百科
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 計(jì)算機(jī)視覺(jué)
- 基于深度學(xué)習(xí)的視覺(jué)定位方法初探:PoseNet簡(jiǎn)介
- 深度學(xué)習(xí)結(jié)合傳統(tǒng)幾何的視覺(jué)定位方法:HSCNet簡(jiǎn)介
- 《OpenCV 4計(jì)算機(jī)視覺(jué)項(xiàng)目實(shí)戰(zhàn) 》 —1.3.15 深度學(xué)習(xí)
- 深度學(xué)習(xí)常用數(shù)據(jù)集資源(計(jì)算機(jī)視覺(jué)領(lǐng)域)
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—3.1.2 怎么做
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—3.3.2 怎么做
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—3.6.2 怎么做
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—3.7.2 怎么做
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—3.8.2 怎么做