- 深度學(xué)習(xí)自己的數(shù)據(jù)集 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計算機(jī)視覺、 語音識別 、自然語言處理等其他領(lǐng)域。來自:百科來自:百科
- 深度學(xué)習(xí)自己的數(shù)據(jù)集 相關(guān)內(nèi)容
-
云知識 基于深度學(xué)習(xí)算法的語音識別 基于深度學(xué)習(xí)算法的語音識別 時間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識別的實(shí)戰(zhàn)演練,讓使用者在了解語音識別基本的原理與實(shí)戰(zhàn)的同時,更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解如下知識: 1、高效的結(jié)構(gòu)設(shè)計。 2、用NAS搜索輕量級網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計 第3章 基于NAS的輕量級神經(jīng)網(wǎng)絡(luò) 第4章來自:百科
- 深度學(xué)習(xí)自己的數(shù)據(jù)集 更多內(nèi)容
-
華為云計算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時間:2020-12-08 10:34:34 本課程旨基于自動售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科
降低成本:對于使用大規(guī)格函數(shù)進(jìn)行后端服務(wù)的代碼,無效請求可以直接由較小規(guī)格的鑒權(quán)函數(shù)攔截,降低大中規(guī)格資源服務(wù)的運(yùn)行成本; 創(chuàng)建鑒權(quán)函數(shù) 和普通函數(shù)的創(chuàng)建流程一樣,只需要注意響應(yīng)的格式,一個使用JWT 鑒權(quán)的簡單案例如下。 編輯接口,配置自定義鑒權(quán) 編輯對應(yīng)的API,選擇自定義鑒權(quán),選擇到我們創(chuàng)建的函數(shù): 一個鑒權(quán)拒絕的示例如下:來自:百科
華為云計算 云知識 什么是數(shù)據(jù)集 什么是數(shù)據(jù)集 時間:2021-04-02 15:07:19 數(shù)據(jù)集,又稱為資料集、數(shù)據(jù)集合或資料集合,是一種由數(shù)據(jù)所組成的集合。數(shù)據(jù)反映了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對AI開發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理來自:百科
應(yīng)用視角的拓?fù)涞貓D,用于展示業(yè)務(wù)流任務(wù)中應(yīng)用之間的連接關(guān)系,方便用戶從應(yīng)用維度查看應(yīng)用之間的關(guān)系、業(yè)務(wù)中數(shù)據(jù)之間存在的關(guān)系。 > 基于對象的拓?fù)?對象視角的拓?fù)涞貓D,用于展示業(yè)務(wù)流任務(wù)中對象節(jié)點(diǎn)之間的連接關(guān)系,用戶可以從對象維度查看數(shù)據(jù)之間的關(guān)系,如開放的API、開放的數(shù)據(jù)源等。對象拓?fù)鋵⒅虚g的處理過程進(jìn)行排除,從對象角度反映業(yè)務(wù)關(guān)系。來自:百科
15:46:18 繁多的AI工具安裝配置、數(shù)據(jù)準(zhǔn)備、模型訓(xùn)練慢等是困擾AI工程師的諸多難題。為解決這個難題,將一站式的 AI開發(fā)平臺 (ModelArts)提供給開發(fā)者,從數(shù)據(jù)準(zhǔn)備到算法開發(fā)、模型訓(xùn)練,最后把模型部署起來,集成到生產(chǎn)環(huán)境。一站式完成所有任務(wù)。ModelArts的功能總覽如下圖所示。來自:百科
掌握ROMA Connect實(shí)現(xiàn)應(yīng)用與數(shù)據(jù)集成的基本原理 實(shí)驗摘要 1.準(zhǔn)備環(huán)境 2.IT/OT融合 3. 數(shù)據(jù)源創(chuàng)建 4. 數(shù)據(jù)流轉(zhuǎn)集成場景 5. DLV 服務(wù)大屏展示環(huán)境監(jiān)控數(shù)據(jù) 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動,一切皆服務(wù)。來自:百科
介紹怎樣在控制臺重置密碼 重置 彈性云服務(wù)器 的密碼 介紹項目管理并授權(quán)的操作步驟 04:06 介紹項目管理并授權(quán)的操作步驟 創(chuàng)建項目并授權(quán) 介紹按企業(yè)項目管理云資源的方式 05:57 介紹按企業(yè)項目管理云資源的方式 管理企業(yè)項目并授權(quán) 如何搭建自己的本地服務(wù)器 實(shí)踐視頻 最佳實(shí)踐視頻幫助您快速了解搭建流程來自:專題
- 深度學(xué)習(xí)修煉(二)——數(shù)據(jù)集的加載
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—2.4 MNIST數(shù)據(jù)集
- 如何使用labelImg標(biāo)注數(shù)據(jù)集,最詳細(xì)的深度學(xué)習(xí)標(biāo)簽教程
- ATCS 一個用于訓(xùn)練深度學(xué)習(xí)模型的數(shù)據(jù)集
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—2.3 CIFAR-100數(shù)據(jù)集
- 深度學(xué)習(xí)常用數(shù)據(jù)集資源(計算機(jī)視覺領(lǐng)域)
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—2.2 CIFAR-10數(shù)據(jù)集
- 深度學(xué)習(xí)常用數(shù)據(jù)集資源(計算機(jī)視覺領(lǐng)域)
- CV之YOLO:深度學(xué)習(xí)之計算機(jī)視覺神經(jīng)網(wǎng)絡(luò)tiny-yolo-5clessses訓(xùn)練自己的數(shù)據(jù)集全程記錄
- Julia 基于Flux深度學(xué)習(xí)框架的cifar10數(shù)據(jù)集分類