- 深度學(xué)習(xí)中圖像識(shí)別的小方向 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí)中圖像識(shí)別的小方向 相關(guān)內(nèi)容
-
本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章來(lái)自:百科
- 深度學(xué)習(xí)中圖像識(shí)別的小方向 更多內(nèi)容
-
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過(guò)二次翻拍、打印翻拍等手法二次處理的圖片。利用翻拍識(shí)別可以來(lái)自:百科緊迫性與重要性不言而喻。如今國(guó)內(nèi)眾多圖像處理的公司越來(lái)越多,各種低價(jià)內(nèi)卷的情況經(jīng)常發(fā)生,而華為云 圖像識(shí)別 Image的出現(xiàn),讓我看到了解決這個(gè)問(wèn)題的可能性。 華為云圖像識(shí)別 Image 是一種基于深度學(xué)習(xí)技術(shù)的服務(wù),能夠準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目來(lái)自:百科華為云計(jì)算 云知識(shí) 圖像識(shí)別 圖像識(shí)別 時(shí)間:2020-10-30 15:12:04 圖像識(shí)別( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)?;?span style='color:#C7000B'>深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種物來(lái)自:百科,從 OBS 桶中讀取圖片會(huì)產(chǎn)生流量消耗和收取相應(yīng)費(fèi)用。 如何關(guān)閉已申請(qǐng)的圖像識(shí)別服務(wù)? 服務(wù)開(kāi)通后,已申請(qǐng)的服務(wù)可在圖像識(shí)別服務(wù)控制臺(tái)的“服務(wù)列表”頁(yè)面內(nèi)查看,如果不想再使用本服務(wù),無(wú)需手動(dòng)關(guān)閉,不調(diào)用即可。 在未購(gòu)買圖像識(shí)別服務(wù)套餐包的情況下,調(diào)用服務(wù)將以按需計(jì)費(fèi)的方式計(jì)費(fèi)。 幫助文檔來(lái)自:專題AI機(jī)器人、AI游戲眼鏡、AI美圖……市場(chǎng)上層出不窮的AI產(chǎn)品讓人眼花繚亂。在AI市場(chǎng)的繁榮之下,是日新月異的AI技術(shù)!本期課程依托華為云EI服務(wù),帶領(lǐng)開(kāi)發(fā)者學(xué)習(xí)和體驗(yàn)多項(xiàng)國(guó)際前沿AI技術(shù)!期望通過(guò)開(kāi)發(fā)者的學(xué)習(xí),幫助企業(yè)解決實(shí)際問(wèn)題,實(shí)現(xiàn)生產(chǎn)自動(dòng)化、提升效率,同時(shí)這也是華為云奉獻(xiàn)給開(kāi)發(fā)者們的一場(chǎng)技術(shù)盛宴。 課程簡(jiǎn)介來(lái)自:百科
- 深度學(xué)習(xí)在圖像識(shí)別中的應(yīng)用
- 深度學(xué)習(xí)技術(shù)在測(cè)井解釋中的未來(lái)發(fā)展方向
- 《深度學(xué)習(xí)之圖像識(shí)別:核心技術(shù)與案例實(shí)戰(zhàn)》 ——3 深度學(xué)習(xí)中的數(shù)據(jù)
- 《深度學(xué)習(xí)之圖像識(shí)別核心技術(shù)與案例實(shí)戰(zhàn)》—3 深度學(xué)習(xí)中的數(shù)據(jù)
- 卷積神經(jīng)網(wǎng)絡(luò)(CNN):深度學(xué)習(xí)中的圖像識(shí)別利器
- 《深度學(xué)習(xí)與圖像識(shí)別:原理與實(shí)踐》—2.3.6 Numpy中的矩陣運(yùn)算
- 《深度學(xué)習(xí)與圖像識(shí)別:原理與實(shí)踐》—2.3.9 Numpy中的arg運(yùn)算
- 深度學(xué)習(xí)在圖像識(shí)別方面的應(yīng)用
- 《深度學(xué)習(xí)與圖像識(shí)別:原理與實(shí)踐》
- 基于深度學(xué)習(xí)的小目標(biāo)檢測(cè)