- 深度學(xué)習(xí)在大數(shù)據(jù)中的應(yīng)用 內(nèi)容精選 換一換
-
第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開(kāi)發(fā)者,致力于讓云無(wú)處不在,讓智能無(wú)所不及,共建智能世界云底座。 華為云官網(wǎng)立即注冊(cè)一元域名華為 云桌面來(lái)自:百科和能好的。并且有大量的研究論文集中于如何將這些AI模型從云上部署到端側(cè),為AI模型創(chuàng)造更多的應(yīng)用場(chǎng)景和產(chǎn)業(yè)價(jià)值。 課程簡(jiǎn)介 為了解決真實(shí)世界中的問(wèn)題,我們的深度學(xué)習(xí)算法需要巨量的數(shù)據(jù),同時(shí)也需要機(jī)器擁有處理龐大數(shù)據(jù)的能力,在現(xiàn)實(shí)世界中部署神經(jīng)網(wǎng)絡(luò)需要平衡效率和能耗以及成本的關(guān)系。本課程介紹了能耗高效的深度學(xué)習(xí)。來(lái)自:百科
- 深度學(xué)習(xí)在大數(shù)據(jù)中的應(yīng)用 相關(guān)內(nèi)容
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科
- 深度學(xué)習(xí)在大數(shù)據(jù)中的應(yīng)用 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科云知識(shí) CDN 技術(shù)在直播中的運(yùn)用 CDN技術(shù)在直播中的運(yùn)用 時(shí)間:2022-05-26 10:14:20 【CDN活動(dòng)專區(qū)】 CDN的常用架構(gòu) CDN架構(gòu)設(shè)計(jì)比較復(fù)雜。不同的CDN廠商,也在對(duì)其架構(gòu)進(jìn)行不斷的優(yōu)化,所以架構(gòu)不能統(tǒng)一而論。這里只是對(duì)一些基本的架構(gòu)進(jìn)行簡(jiǎn)單的介紹。 CDN來(lái)自:百科經(jīng)驗(yàn),在國(guó)際頂級(jí)會(huì)議和期刊上發(fā)表超過(guò)50篇論文,谷歌引用數(shù)1700,擅長(zhǎng)大規(guī)模視覺(jué)識(shí)別、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員:來(lái)自:百科)面向政企行業(yè), 打破跨行業(yè)的數(shù)據(jù)孤島, 實(shí)現(xiàn)行業(yè)內(nèi)部、跨行業(yè)之間在數(shù)據(jù)隱私保護(hù)下的多方數(shù)據(jù)聯(lián)合分析和聯(lián)邦計(jì)算能力,基于可信硬件執(zhí)行環(huán)境TEE、安全多方計(jì)算MPC、 區(qū)塊鏈 等技術(shù), 實(shí)現(xiàn)數(shù)據(jù)在存儲(chǔ)、流通、計(jì)算過(guò)程中端到端的安全和可審計(jì), 推動(dòng)跨行業(yè)的可信數(shù)據(jù)融合和協(xié)同。 表格存儲(chǔ)服務(wù)來(lái)自:專題云知識(shí) 數(shù)據(jù)庫(kù)中數(shù)據(jù)的特點(diǎn) 數(shù)據(jù)庫(kù)中數(shù)據(jù)的特點(diǎn) 時(shí)間:2021-05-20 15:35:05 數(shù)據(jù)庫(kù) 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)是描述事務(wù)的符號(hào)記錄,可以是數(shù)字,也可以是文字、圖形、圖像、音頻、視頻等,有多種表現(xiàn)形式。數(shù)據(jù)庫(kù)是存放數(shù)據(jù)的倉(cāng)庫(kù),是大量數(shù)據(jù)的集合。 存放在數(shù)據(jù)庫(kù)中數(shù)據(jù)的特點(diǎn)來(lái)自:百科???華為云學(xué)院 數(shù)據(jù)庫(kù)安全基礎(chǔ) HCIA- GaussDB 系列課程。數(shù)據(jù)庫(kù)作為核心的基礎(chǔ)軟件,在我們的系統(tǒng)架構(gòu)中處于系統(tǒng)的最末端,它是查詢和存儲(chǔ)數(shù)據(jù)的系統(tǒng),是各業(yè)務(wù)數(shù)據(jù)最終落地的承載者,而當(dāng)今社會(huì)最值錢的又是擁有大量的數(shù)據(jù),因此其數(shù)據(jù)庫(kù)安全性至關(guān)重要。 立即學(xué)習(xí) 最新文章 替換V來(lái)自:百科華為云計(jì)算 云知識(shí) 傳統(tǒng)數(shù)倉(cāng)在大數(shù)據(jù)時(shí)代的劣勢(shì) 傳統(tǒng)數(shù)倉(cāng)在大數(shù)據(jù)時(shí)代的劣勢(shì) 時(shí)間:2021-03-03 16:46:24 數(shù)據(jù)倉(cāng)庫(kù) 數(shù)據(jù)倉(cāng)庫(kù)是指從業(yè)務(wù)數(shù)據(jù)中創(chuàng)建信息數(shù)據(jù)庫(kù),并針對(duì)決策和分析進(jìn)行優(yōu)化。華為云數(shù)據(jù)倉(cāng)庫(kù)服務(wù)實(shí)時(shí)、簡(jiǎn)單、安全可信的企業(yè)級(jí)融合數(shù)據(jù)倉(cāng)庫(kù),可借助DWS Expr來(lái)自:百科hema的方式,能免去您在游戲玩法變化中需要變更表結(jié)構(gòu)的痛苦,非常適用于靈活多變的游戲業(yè)務(wù)需求。您可以將模式固定的結(jié)構(gòu)化數(shù)據(jù)存儲(chǔ)在云數(shù)據(jù)庫(kù) RDS中,模式靈活的業(yè)務(wù)存儲(chǔ)在 DDS 中,高熱數(shù)據(jù)存儲(chǔ)在GeminiDB Redis 接口里,實(shí)現(xiàn)對(duì)業(yè)務(wù)數(shù)據(jù)高效存取,降低存儲(chǔ)數(shù)據(jù)的投入成本。來(lái)自:專題Connect在工業(yè)互聯(lián)網(wǎng)集成上的應(yīng)用 ROMA Connect在工業(yè)互聯(lián)網(wǎng)集成上的應(yīng)用 時(shí)間:2020-09-21 15:16:57 制造業(yè)數(shù)字化轉(zhuǎn)型中有幾類典型問(wèn)題: 難以集成設(shè)備數(shù)據(jù)與環(huán)境數(shù)據(jù) 多品牌、多種類的生產(chǎn)設(shè)備要實(shí)現(xiàn)實(shí)時(shí)監(jiān)控管理,則設(shè)備數(shù)據(jù)與環(huán)境數(shù)據(jù)需要采集和上傳,來(lái)自:百科
- 深度學(xué)習(xí)模型在油田數(shù)據(jù)挖掘中的應(yīng)用
- 深度學(xué)習(xí)技術(shù)在測(cè)井?dāng)?shù)據(jù)分類與識(shí)別中的應(yīng)用
- 深度學(xué)習(xí)在化學(xué)反應(yīng)中的應(yīng)用
- 深度學(xué)習(xí)技術(shù)在油藏分析中的應(yīng)用
- 深度學(xué)習(xí)在語(yǔ)音識(shí)別中的應(yīng)用
- 深度學(xué)習(xí)在語(yǔ)音識(shí)別中的應(yīng)用
- 深度學(xué)習(xí)技術(shù)在測(cè)井?dāng)?shù)據(jù)預(yù)測(cè)與模擬中的應(yīng)用
- 深度學(xué)習(xí)在文本情感分析中的應(yīng)用
- 深度學(xué)習(xí)在地震測(cè)井?dāng)?shù)據(jù)處理中的應(yīng)用研究
- 深度學(xué)習(xí)在圖像識(shí)別中的應(yīng)用
- 開(kāi)發(fā)深度學(xué)習(xí)模型
- 遷移應(yīng)用中的對(duì)象數(shù)據(jù)
- 在應(yīng)用中激活成員
- 在應(yīng)用中引用BO
- 導(dǎo)入導(dǎo)出應(yīng)用中對(duì)象的數(shù)據(jù)
- 云監(jiān)控在視頻直播中的應(yīng)用
- GeminiDB Redis 在IM場(chǎng)景中的應(yīng)用
- 部署NGC容器環(huán)境以構(gòu)建深度學(xué)習(xí)開(kāi)發(fā)環(huán)境
- Manifest文件中{{}}引用的參數(shù)在應(yīng)用中未定義
- Manifest文件中{{}}引用的參數(shù)在應(yīng)用中未定義